Predicting body mass index and isometric leg strength using soft tissue distributions from computed tomography scans

Author(s):  
Marco Recenti ◽  
Carlo Ricciardi ◽  
Anaïs Monet ◽  
Deborah Jacob ◽  
Jorgelina Ramos ◽  
...  
2020 ◽  
Vol 128 (1) ◽  
pp. 168-177 ◽  
Author(s):  
S. Rutting ◽  
S. Mahadev ◽  
K. O. Tonga ◽  
D. L. Bailey ◽  
J. R. Dame Carroll ◽  
...  

Obesity is associated with reduced operating lung volumes that may contribute to increased airway closure during tidal breathing and abnormalities in ventilation distribution. We investigated the effect of obesity on the topographical distribution of ventilation before and after methacholine-induced bronchoconstriction using single-photon emission computed tomography (SPECT)-computed tomography (CT) in healthy subjects. Subjects with obesity ( n = 9) and subjects without obesity ( n = 10) underwent baseline and postbronchoprovocation SPECT-CT imaging, in which Technegas was inhaled upright and followed by supine scanning. Lung regions that were nonventilated (Ventnon), low ventilated (Ventlow), or well ventilated (Ventwell) were calculated using an adaptive threshold method and were expressed as a percentage of total lung volume. To determine regional ventilation, lungs were divided into upper, middle, and lower thirds of axial length, derived from CT. At baseline, Ventnon and Ventlow for the entire lung were similar in subjects with and without obesity. However, in the upper lung zone, Ventnon (17.5 ± 10.6% vs. 34.7 ± 7.8%, P < 0.001) and Ventlow (25.7 ± 6.3% vs. 33.6 ± 5.1%, P < 0.05) were decreased in subjects with obesity, with a consequent increase in Ventwell (56.8 ± 9.2% vs. 31.7 ± 10.1%, P < 0.001). The greater diversion of ventilation to the upper zone was correlated with body mass index ( rs = 0.74, P < 0.001), respiratory system resistance ( rs = 0.72, P < 0.001), and respiratory system reactance ( rs = −0.64, P = 0.003) but not with lung volumes or basal airway closure. Following bronchoprovocation, overall Ventnon increased similarly in both groups; however, in subjects without obesity, Ventnon only increased in the lower zone, whereas in subjects with obesity, Ventnon increased more evenly across all lung zones. In conclusion, obesity is associated with altered ventilation distribution during baseline and following bronchoprovocation, independent of reduced lung volumes. NEW & NOTEWORTHY Using ventilation SPECT-computed tomography imaging in healthy subjects, we demonstrate that ventilation in obesity is diverted to the upper lung zone and that this is strongly correlated with body mass index but is independent of operating lung volumes and of airway closure. Furthermore, methacholine-induced bronchoconstriction only occurred in the lower lung zone in individuals who were not obese, whereas in subjects who were obese, it occurred more evenly across all lung zones. These findings show that obesity-associated factors alter the topographical distribution of ventilation.


2019 ◽  
Vol 98 (7) ◽  
pp. E81-E86 ◽  
Author(s):  
Mehmet Surmeli ◽  
Ildem Deveci ◽  
Hasan Canakci ◽  
Mustafa Salih Canpolat ◽  
Burak Karabulut ◽  
...  

In this study, we aimed to investigate the relationship between the body mass index (BMI) and the morphometric properties of auricula and its acoustic gain characteristics. A total of 45 participants between 18 and 45 years of age were enrolled into the study. Participants’ height and weight measurements were recorded for the BMI calculation. On both sides, the morphometric properties of the auricula were measured and recorded. Additionally, the participants were subjected to multidirectional dynamic real ear measurements (REMs) to specify the intensity and frequency values of the maximum hearing gain. Participants consisted of 24 women and 21 men. The mean BMI was 23.42. The mean auricular area was 22.70 cm2. Statistically significant positive correlation was found between the auricular area and BMI ( r = 0.427, P = .03). The mean postauricular sulcus angle was 20.99°. The mastoid-helix distance was 16.07 mm. There was no statistically significant correlation between BMI level and postauricular sulcus angle and mastoid-helix distance ( P > .05). The mean dynamic REM measurement was evaluated. The maximum acoustic gain at anterior, lateral, and posterior vectorial stimulation was calculated as 20.9, 24.2, and 20.7 dB Sound Presure Level (SPL), respectively. Statistically significant negative correlation was found between the three directions acoustic gain level and BMI in the statistical examination ( r = −0.365, r = −0.386, r = −0.453, respectively, and P < .05 for all). The results of acoustic gain frequency were 2967.4, 2963, and 2934 Hz, respectively. There was no statistically significant correlation between acoustic gain frequency and BMI ( P > .05). When participants were grouped according to their BMI, participants with a BMI >25 had a statistically significantly bigger auricular area and lower maximum acoustic gain when compared with those with BMI <25 ( P < .05). We found that the auricular area increased with BMI. We think that this is related to soft tissue thickening of the auricula related to high BMI. In addition, we found that the acoustic gain level decreased inversely with BMI. We believe that the decrease in acoustic gain is due to the increase of acoustic resistance after the increase of soft tissue thickness. In conclusion, we think that BMI has a negative effect on auditory function according to findings in our study.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Siobhan O’Neill ◽  
Richard G. Kavanagh ◽  
Brian W. Carey ◽  
Niamh Moore ◽  
Michael Maher ◽  
...  

Oncology ◽  
2018 ◽  
Vol 95 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Bruno Vincenzi ◽  
Giuseppe Badalamenti ◽  
Grazia Armento ◽  
Marianna Silletta ◽  
Mariella Spalato Ceruso ◽  
...  

2019 ◽  
Vol 37 (9) ◽  
pp. 723-730 ◽  
Author(s):  
Bas Vaarwerk ◽  
Gianni Bisogno ◽  
Kieran McHugh ◽  
Hervé J. Brisse ◽  
Carlo Morosi ◽  
...  

Purpose To evaluate the clinical significance of indeterminate pulmonary nodules at diagnosis (defined as ≤ 4 pulmonary nodules < 5 mm or 1 nodule measuring ≥ 5 and < 10 mm) in patients with pediatric rhabdomyosarcoma (RMS). Patients and Methods We selected patients with supposed nonmetastatic RMS treated in large pediatric oncology centers in the United Kingdom, France, Italy, and the Netherlands, who were enrolled in the European Soft Tissue Sarcoma Study Group (E pSSG) RMS 2005 study. Patients included in the current study received a diagnosis between September 2005 and December 2013, and had chest computed tomography scans available for review that were done at time of diagnosis. Local radiologists were asked to review the chest computed tomography scans for the presence of pulmonary nodules and to record their findings on a standardized case report form. In the E pSSG RMS 2005 Study, patients with indeterminate pulmonary nodules were treated identically to patients without pulmonary nodules, enabling us to compare event-free survival and overall survival between groups by log-rank test. Results In total, 316 patients were included; 67 patients (21.2%) had indeterminate pulmonary nodules on imaging and 249 patients (78.8%) had no pulmonary nodules evident at diagnosis. Median follow-up for survivors (n = 258) was 75.1 months; respective 5-year event-free survival and overall survival rates (95% CI) were 77.0% (64.8% to 85.5%) and 82.0% (69.7% to 89.6%) for patients with indeterminate nodules and 73.2% (67.1% to 78.3%) and 80.8% (75.1% to 85.3%) for patients without nodules at diagnosis ( P = .68 and .76, respectively). Conclusion Our study demonstrated that indeterminate pulmonary nodules at diagnosis do not affect outcome in patients with otherwise localized RMS. There is no need to biopsy or upstage patients with RMS who have indeterminate pulmonary nodules at diagnosis.


2018 ◽  
Vol 77 (3) ◽  
pp. 570-582 ◽  
Author(s):  
D. Toneva ◽  
S. Nikolova ◽  
I. Georgiev ◽  
S. Harizanov ◽  
D. Zlatareva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document