Geochemical Features of Bellara Trap Volcanic Rocks of Chitradurga Greenstone Belt, Western Dharwar Craton, India: Insights into MORB-BABB Association from a Neoarchean Back-Arc Basin

Author(s):  
Chakravadhanula Manikyamba ◽  
Sohini Ganguly ◽  
Arijit Pahari
1992 ◽  
Vol 29 (7) ◽  
pp. 1448-1458 ◽  
Author(s):  
M. R. Laflèche ◽  
C. Dupuy ◽  
J. Dostal

The late Archean Blake River Group volcanic sequence forms the uppermost part of the southern Abitibi greenstone belt in Quebec. The group is mainly composed of mid-ocean-ridge basalt (MORB)-like tholeiites that show a progressive change of several incompatible trace element ratios (e.g., Nb/Th, Nb/Ta, La/Yb, and Zr/Y) during differentiation. The compositional variations are inferred to be the result of fractional crystallization coupled with mixing–contamination of tholeiites by calc-alkaline magma which produced the mafic–intermediate lavas intercalated with the tholeiites in the uppermost part of the sequence. The MORB-like tholeiites were probably emplaced in a back-arc setting.


2015 ◽  
Vol 258 ◽  
pp. 1-23 ◽  
Author(s):  
C. Manikyamba ◽  
Sohini Ganguly ◽  
M. Santosh ◽  
Abhishek Saha ◽  
Adrija Chatterjee ◽  
...  

2020 ◽  
Vol 55 (7) ◽  
pp. 5308-5329
Author(s):  
Mutum Rajanikanta Singh ◽  
Athokpam Krishnakanta Singh ◽  
M. Santosh ◽  
Muddarmaiah Lingadevaru ◽  
Nongmaithem Lakhan

2020 ◽  
Author(s):  
Anshuman Giri ◽  
Rajagopal Anand

<p>The archaean greenstone belts, dominated by mafic to felsic volcanic rocks followed by younger granitic intrusions occurs associated with volcano-sedimentary sequences. The Dharwar Super group (2600 to 2900 Ma) of rocks in western Dharwar craton, underlie the older TTG gneisses. The Shimoga greenstone belt (SGB) of WDC constitute the basal polymictic conglomerate along with quartzite, pyroclastic rocks, carbonaceous rocks, greywacke-argillite sequences with a thick pile of mafic and felsic metavolcanic rocks (BADR). These rocks are suffered from greenschist to lower amphibolite grade of metamorphism. The Medur metavolcanic volcanic rocks give an age of 2638 ± 66 Ma (1), whereas the Daginakatte felsic volcanic rocks give an age of 2601 ± 6 Ma (2). The present studied age of 2638 ± 66 Ma, tells about the cessation of mafic magmatism in WDC. The metavolcanic rocks of the Medur formation are tholeiitic to calc-alkaline in nature. These rocks show flat to LREE enriched REE pattern with negative europium anomaly. And also show enrichment in LILE and depletion in HFSE elements with significant Nb-Ta anomaly. The geochemical and the isotope data suggest the involvement of partial melting of the depleted mantle by the slab components and assimilation fractional crystallization (AFC) processes for the magma generation. The SGB metavolcanic rocks have 143Nd/144Nd ratios (0.511150 to .513076) and εNd values of -3.1 to -5.5 and the negative εNd values  for the rocks is due to the crustal contamination of the magma in a shallow marine subduction setting. The parental magmas were derived from melting in the mantle wedge fluxed by slab derived fluids and slab components followed by assimilation fractional crystallization (AFC) processes involving continental crust in an active continental margin.</p><ul><li>(1) Giri et al., 2019. Lithos, <strong>330-331</strong>, 177-193</li> <li>(2) Trendall et al., 1997a. J. Geol. Soc. India, <strong>50</strong>, 25-50.</li> </ul>


2000 ◽  
Vol 37 (7) ◽  
pp. 1021-1038 ◽  
Author(s):  
Pete Hollings ◽  
Greg Stott ◽  
Derek Wyman

Comprehensive trace element analyses of mafic and felsic volcanic rocks from the 2.85-2.74 Ga Meen-Dempster greenstone belt reveal a wide compositional diversity. The ~2.85 Ga Kaminiskag assemblage is dominated by mafic tholeiite characterized by predominantly unfractionated REE (La/Smn = 0.8-1.1). Rare intermediate and felsic pyroclastic flows (SiO2 = 62-74) with moderate to pronounced LREE enrichment are intercalated with the tholeiite. The Kaminiskag assemblage is overlain by the ~2825 Ma Meen assemblage, comprising dominantly dacitic tuffs and pyroclastic breccia, displaying enriched LREE (La/Smn = 3.7-7.2) and moderately fractionated HREE, in conjunction with pronounced negative Nb anomalies. Five distinct suites have been recognized in the ~2740 Ma Confederation assemblage: (1) tholeiitic basalt with flat to smoothly depleted REE, (2) tholeiite with flat to weakly depleted LREE in conjunction with pronounced negative Nb anomalies, (3) Fe-rich basalt with elevated Ti and P contents, LREE enrichment, and fractionated HREE, (4) LREE enriched basalt and andesite with negative Nb anomalies, and (5) dacite and rhyolite with enriched LREE, moderately fractionated HREE, and variable high field strength element anomalies. The geochemistry and geochronology of the Kaminiskag and Meen assemblages are consistent with the formation of an oceanic back arc (Kaminiskag assemblage), which formed the basement for a subduction-related arc complex (Meen assemblage) after a 15 Ma hiatus. The Confederation assemblage is interpreted to represent an Archean back arc, where the complex interplay of mantle sources allows for the eruption of tholeiite, subduction-modified tholeiite, ocean island basalt-like basalt, and subduction-related arc-type volcanic rocks. The recognition of back-arc basins within the Meen-Dempster greenstone belt emphasizes a continuity of crustal growth processes from the Archean to the present day.


1999 ◽  
Vol 36 (7) ◽  
pp. 1043-1059 ◽  
Author(s):  
C J Northrup ◽  
C Isachsen ◽  
S A Bowring

Data from the Point Lake area, central Slave craton, suggest an intimate tectonic and paleogeographic association between volcano-sedimentary supracrustal rocks and adjacent gneisses. Granite plutons and orthogneisses yield U-Pb zircon crystallization ages ranging from ca. 3230 to 2818 Ma. Numerous mafic dykes cut the gneisses, and two have been dated by U-Pb zircon geochronometry at 2673 ± 3 and 2690 ± 3 Ma, ages similar to those of volcanic rocks in the Point Lake greenstone belt. Although high-strain zones form the greenstone-gneiss in most places, a structural repetition of granite about 4 km east of Keskarrah Bay is cut by numerous mafic dykes and apparently overlain depositionally(?) by pillow basalt. Mafic volcanic and plutonic rocks from Point Lake have initial (2.7 Ga) εNd values ranging from about +2.2 to -6.3, significantly lower than the depleted mantle at that time. The Nd data suggest either derivation from a more isotopically evolved reservoir, or assimilation of crust similar to the granite gneiss at Point Lake. We infer from the presence of mafic dykes of appropriate age in the basement and the low initial εNd values of some pillow basalts that the volcanic sequence developed on the older granitic crust. The supracrustal rocks may have been deposited in a back-arc basin floored at least in part by attenuated continental material. Closure of the basin, bulk east-west shortening, and sinistral oblique or strike-slip faulting then obscured the original relations between the volcanic and gneissic rocks.


2003 ◽  
Vol 40 (6) ◽  
pp. 833-852 ◽  
Author(s):  
M Tardy ◽  
H Lapierre ◽  
D Bosch ◽  
A Cadoux ◽  
A Narros ◽  
...  

The Slide Mountain Terrane consists of Devonian to Permian siliceous and detrital sediments in which are interbedded basalts and dolerites. Locally, ultramafic cumulates intrude these sediments. The Slide Mountain Terrane is considered to represent a back-arc basin related to the Quesnellia Paleozoic arc-terrane. However, the Slide Mountain mafic volcanic rocks exposed in central British Colombia do not exhibit features of back-arc basin basalts (BABB) but those of mid-oceanic ridge (MORB) and oceanic island (OIB) basalts. The N-MORB-type volcanic rocks are characterized by light rare-earth element (LREE)-depleted patterns, La/Nb ratios ranging between 1 and 2. Moreover, their Nd and Pb isotopic compositions suggest that they derived from a depleted mantle source. The within-plate basalts differ from those of MORB affinity by LREE-enriched patterns; higher TiO2, Nb, Ta, and Th abundances; lower εNd values; and correlatively higher isotopic Pb ratios. The Nd and Pb isotopic compositions of the ultramafic cumulates are similar to those of MORB-type volcanic rocks. The correlations between εNd and incompatible elements suggest that part of the Slide Mountain volcanic rocks derive from the mixing of two mantle sources: a depleted N-MORB type and an enriched OIB type. This indicates that some volcanic rocks of the Slide Mountain basin likely developed from a ridge-centered or near-ridge hotspot. The activity of this hotspot is probably related to the worldwide important mantle plume activity that occurred at the end of Permian times, notably in Siberia.


1980 ◽  
Vol 17 (5) ◽  
pp. 560-568 ◽  
Author(s):  
G. S. Clark ◽  
S.-P. Cheung

Rb–Sr whole-rock ages have been determined for rocks from the Oxford Lake – Knee Lake – Gods Lake greenstone belt, in the Superior Province of northeastern Manitoba.The age of the Magill Lake Pluton is 2455 ± 35 Ma (λ87Rb = 1.42 × 10−11 yr−1), with an initial 87Sr/86Sr ratio of 0.7078 ± 0.0043. This granitic stock intrudes the Oxford Lake Group, so it is post-tectonic and probably related to the second, weaker stage of metamorphism.The age of the Bayly Lake Pluton is 2424 ± 74 Ma, with an initial 87Sr/86Sr ratio of 0.7029 ± 0.0001. This granodioritic batholith complex does not intrude the Oxford Lake Group. It is syn-tectonic and metamorphosed.The age of volcanic rocks of the Hayes River Group, from Goose Lake (30 km south of Gods Lake Narrows), is 2680 ± 125 Ma, with an initial 87Sr/86Sr ratio of 0.7014 ± 0.0009.The age for the Magill Lake and Bayly Lake Plutons can be interpreted as the minimum ages of granitic intrusion in the area.The age for the Hayes River Group volcanic rocks is consistent with Rb–Sr ages of volcanic rocks from other Archean greenstone belts within the northwestern Superior Province.


Sign in / Sign up

Export Citation Format

Share Document