Geochemistry and isotope studies of the metavolcanic rocks of Shimoga greenstone belt, Western Dharwar craton - an effort to deduce the Petrogenesis.

Author(s):  
Anshuman Giri ◽  
Rajagopal Anand

<p>The archaean greenstone belts, dominated by mafic to felsic volcanic rocks followed by younger granitic intrusions occurs associated with volcano-sedimentary sequences. The Dharwar Super group (2600 to 2900 Ma) of rocks in western Dharwar craton, underlie the older TTG gneisses. The Shimoga greenstone belt (SGB) of WDC constitute the basal polymictic conglomerate along with quartzite, pyroclastic rocks, carbonaceous rocks, greywacke-argillite sequences with a thick pile of mafic and felsic metavolcanic rocks (BADR). These rocks are suffered from greenschist to lower amphibolite grade of metamorphism. The Medur metavolcanic volcanic rocks give an age of 2638 ± 66 Ma (1), whereas the Daginakatte felsic volcanic rocks give an age of 2601 ± 6 Ma (2). The present studied age of 2638 ± 66 Ma, tells about the cessation of mafic magmatism in WDC. The metavolcanic rocks of the Medur formation are tholeiitic to calc-alkaline in nature. These rocks show flat to LREE enriched REE pattern with negative europium anomaly. And also show enrichment in LILE and depletion in HFSE elements with significant Nb-Ta anomaly. The geochemical and the isotope data suggest the involvement of partial melting of the depleted mantle by the slab components and assimilation fractional crystallization (AFC) processes for the magma generation. The SGB metavolcanic rocks have 143Nd/144Nd ratios (0.511150 to .513076) and εNd values of -3.1 to -5.5 and the negative εNd values  for the rocks is due to the crustal contamination of the magma in a shallow marine subduction setting. The parental magmas were derived from melting in the mantle wedge fluxed by slab derived fluids and slab components followed by assimilation fractional crystallization (AFC) processes involving continental crust in an active continental margin.</p><ul><li>(1) Giri et al., 2019. Lithos, <strong>330-331</strong>, 177-193</li> <li>(2) Trendall et al., 1997a. J. Geol. Soc. India, <strong>50</strong>, 25-50.</li> </ul>

1987 ◽  
Vol 24 (12) ◽  
pp. 2551-2567 ◽  
Author(s):  
Osamu Ujike ◽  
A. M. Goodwin

Felsic magma petrogenesis was studied by analyzing 24 stratigraphically controlled Archean andesite-to-rhyolite lava flows of both tholeiitic and calc-alkalic affinity from the upper Noranda Subgroup, Quebec, using instrumental neutron activation and X-ray fluorescence techniques. The lavas have moderate values of [La/Yb]N (0.9–3.8) and low values of 100 × Th/Zr (~1). According to calculations following batch partial melting and Rayleigh fractional crystallization models, both the calc-alkalic and tholeiitic felsic volcanic rocks are probably products of shallow-level fractional crystallization of mafic parental magmas formed respectively by lower (~7 % for calc-alkalic) and higher (~14% for tholeiitic) degrees of partial melting of a primitive mantle source.Contribution to the magma genesis from plausible crustal materials was negligible. A back-arc-type diapirism is geochemically suggested for the tectonic model of origin of Noranda felsic magmas, in conformity with geological observations. Felsic volcanic rocks with compositions analogous to the studied samples exist in several other Archean terrains of the Canadian Shield, suggesting thereby that the late Archean sialic crust was at least in part produced by volcanic rocks ultimately derived from the primitive mantle.


2002 ◽  
Vol 39 (5) ◽  
pp. 731-748 ◽  
Author(s):  
G S Sinclair ◽  
S M Barr ◽  
N G Culshaw ◽  
J W.F Ketchum

The Aillik domain of the Makkovik Province is dominated by deformed and metamorphosed sedimentary and bimodal volcanic rocks of the redefined Aillik Group and abundant unfoliated late- to post-orogenic plutonic rocks. Mapping and petrological studies in the Makkovik Bay area of the Aillik domain showed that the upper part of the group, in addition to felsic volcanic rocks, also includes extensive areas of hypabyssal, foliated granitic rocks (Measles Point Granite). Although petrochemically similar to the spatially associated felsic volcanic rocks, a new U–Pb (zircon) age of 1929 Ma suggests that the Measles Point Granite may be about 70 million years older than the volcanic rocks of the Aillik Group, based on published U–Pb dates for the latter unit. The volcanic and granitic rocks show similar structural and metamorphic history, and both have characteristics of crust-derived A-type felsic rocks, although the granite shows less chemical variation than the felsic volcanic rocks. A within-plate setting is postulated, although the associated mafic metavolcanic rocks and amphibolite dykes show evidence of a volcanic-arc influence. Possible solutions of the paradox presented by the U–Pb ages imply that the Measles Point Granite either represents the juvenile basement to the Aillik Group or was derived from a basement with a large juvenile component. The setting for deposition of the Aillik Group that is consistent with current tectonic models for the Makkovik Province is a rifted arc built on a juvenile terrane accreted to Archean crust.


2020 ◽  
Author(s):  
Nongmaithem Lakhan Singh ◽  
Athokpam Krishnakanta Singh

<p>We present zircon U-Pb ages and whole-rock geochemistry along with mineral chemistry of the Khardung volcanic rocks outcropped in the northern margin of the Ladakh batholith in order to constrain their origin and tectono-magmatic history. These volcanic rocks are sandwiched between the Ladakh batholith in the south and the Shyok suture zone in the north and span a continuous compositional range from basalt to rhyolite, although mafic rocks are minor and intermediate to felsic rocks are volumetrically predominant. New zircon U-Pb dating for andesite coupled with two rhyolitic rocks yield 69.71 Ma, 62.49 Ma, and 66.55 Ma, defining the probable span of their magmatism from Late Cretaceous to Palaeogene. Based on their mineralogical and geochemical compositional diversity, the Khardung volcanic rocks are categorized as intermediate volcanic rocks (basaltic andesite-andesite) and felsic volcanic rocks (dacite-rhyolite). The intermediate volcanic rocks are marked by low SiO<sub>2</sub> (52.80-61.31 wt.%), enriched LREEs, and negative HFSEs (Nb, Ti, Zr) anomalies whereas,  felsic volcanic rocks are characterized by high SiO<sub>2</sub> (64.52-79.19 wt.%), pronounced negative Eu anomalies, enriched LREE and concave-downward HREE’s and negative HFSE’s (Nb, Ti) anomalies. Both the intermediate and felsic volcanic rocks exhibit quartz, sanidine, albite, bytownite, and diopside as their dominant mineral phases. Geochemical signatures indicate that the fractional crystallization and crustal contamination played a significant role in the evolution of the Khardung volcanic rocks and their geochemical diversity probably resulted from the partial melting of the common primary source, which had been metasomatized by variable contributions of fluids released from down going Neo-Tethyan oceanic crust. Thus, the Khardung volcanic rocks could be considered as a product of mature stage of arc magmatism during the subduction of the Neo-Tethyan oceanic crust, which occurred during Early Cretaceous to Palaeogene, prior to the main collision between the Indian and Asian plates.</p>


1995 ◽  
Vol 32 (5) ◽  
pp. 614-630 ◽  
Author(s):  
Kate Maclachlan ◽  
Herb Helmstaedt

An Archean mafic dike complex in the Chan Formation at the base of the mafic volcanic section of the Yellowknife greenstone belt consists of multiple metagabbro dikes and sills separated by screens of pillowed mafic volcanic rocks, which are cut by a younger postvolcanic metadiabase dike swarm. Field relationships and geochemical characteristics are compatible with a comagmatic origin for the metagabbro and metavolcanic rocks that were fed through and deposited on an older, rift-related, supracrustal sequence of the Dwyer Group. The synvolcanic metagabbro dikes have extended the strike length of the volcanic section by at least 100%. The mafic rocks of the Chan Formation are geochemically similar to mid-ocean ridge basalt, possibly with a minor subduction-zone component. Preliminary εNd values for metagabbroic rocks are consistent with the derivation of magmas predominantly from a normal, depleted-mantle source. The Chan Formation is interpreted to have formed in a marginal basin-like setting, adjacent to a previously rifted and attenuated protocontinental margin.


1987 ◽  
Vol 24 (5) ◽  
pp. 1053-1063 ◽  
Author(s):  
D. A. Baldwin ◽  
E. C. Syme ◽  
H. V. Zwanzig ◽  
T. M. Gordon ◽  
P. A. Hunt ◽  
...  

Two ages of magmatism have been determined from zircon in felsic flows and plutons in the Churchill Province of Manitoba. A rhyolite flow from the Lynn Lake metavolcanic belt has a U–Pb age of [Formula: see text], and a rhyolite flow from the adjacent Rusty Lake metavolcanic belt has an age of [Formula: see text]. Tonalite and quartz diorite from two composite plutons emplaced into the volcanic rocks at Lynn Lake have ages of [Formula: see text] and [Formula: see text], indistinguishable from the age of the Rusty Lake belt rhyolite. The arcuate domain of metavolcanic rocks that includes the Rusty Lake belt in the southeast, the Lynn Lake belt in the north, and the La Ronge belt (Saskatchewan) in the southwest has previously been considered a single structural sub-province with similar ages throughout. Our results and published U–Pb ages from Saskatchewan indicate that an older magmatism is represented by volcanic rocks in the Lynn Lake belt; a younger magmatism, by volcanic rocks in the Rusty Lake and La Ronge belts and plutons in the Lynn Lake belt. At Lynn Lake the older magmatism (1910 Ma) produced mafic, intermediate, and felsic volcanic rocks and synvolcanic plutons. The volcanic rocks are geochemically similar to Cenozoic island-arc magmatic sequences. These rocks were isoclinally folded and subsequently intruded by the 1876 Ma plutons. The younger, dominantly subaerial, volcanism (1878 Ma) at Rusty Lake was predominantly felsic, and the coeval plutons were granitoid. The distribution of ages and the 8 km thickness of the younger volcanic sequence suggest that the older rock served as basement during the younger magmatism.


1986 ◽  
Vol 23 (1) ◽  
pp. 27-42 ◽  
Author(s):  
F. Corfu ◽  
H. Wallace

U–Pb dating was carried out on nine volcanic rocks and two felsic intrusions from the Red Lake greenstone belt in order to establish an absolute time framework for the magmatic evolution of the area and yield first indications on the time of deformation and gold mineralization.The data indicate a protracted period of igneous activity spanning at least 270 Ma. Felsic volcanic rocks near the top of the tholeiitic to komatiitic sequence in the eastern part of the belt yield ages of [Formula: see text] and [Formula: see text]. A third unit, dated at [Formula: see text], contains inherited zircons older than 2982 Ma, which casts some uncertainty on the validity of the inferred intercept age. Rocks in the western part of the belt, previously believed to form a relatively young calc-alkalic sequence but now known to be dominantly tholeiitic, are shown to be relatively old, with ages of [Formula: see text] and [Formula: see text]. These two dates also bracket the age of stromatolites occurring in chemical sediments that are under and overlain by the dated units.Another volcanic horizon in the centre of the belt is dated at 2830 ± 15 Ma, and calc-alkaline volcanic sequences on the southern and northern flanks of the belt yield ages of 2739.0 ± 3.0 and [Formula: see text], respectively. An age of [Formula: see text] was determined for tholeiitic pyroclastic rocks near the base of the predominantly calc-alkaline Heyson sequence.The major gold deposits of the Red Lake belt appear to be present dominantly within older supracrustal sequences. On the other hand, they are also associated with late deformation zones that postdate the intrusion of the Dome Stock dated at 2718.2 ± 1.1 Ma ago. The time of an earlier folding event is bracketed by this age and by the age of [Formula: see text] for an isoclinally folded felsic dike.


2000 ◽  
Vol 37 (12) ◽  
pp. 1677-1689 ◽  
Author(s):  
John A Ayer ◽  
Jaroslav Dostal

Nd and Pb isotopes from the Lake of the Woods greenstone belt indicate the presence of three distinct reservoir sources: old enriched crust (>3.0 Ga); pre-2.7 Ga, homogeneous depleted mantle; and post-2.70 Ga heterogeneous mantle. EpsilonNd values of +1.1 to +2.3 for ultramafic to felsic metavolcanic rocks (2.74–2.72 Ga) indicate derivation from depleted mantle. The εNd value of –0.9 for younger turbidite (2.71 Ga), in conjunction with detrital zircon ages ranging from 2.72 to 3.0 Ga, indicates detritus from local greenstone belt sources (depleted mantle) mixed with an older crustal source. Post-2.70 Ga heterogeneity is demonstrated by εNd values ranging from –0.4 to +0.4 in shoshonitic to calc-alkaline metavolcanic rocks and +2.1 in a coeval ultrapotassic pluton. Pb isotopes from the pluton indicate derivation from a depleted mantle reservoir with an initial 207Pb/204Pb of 14.52, an initial 206Pb/204Pb of 13.29, and µ1 of 7.86. Isotopic comparison with post-2.70 Ga potassic suites from across the Superior Province indicates widespread mixing between depleted mantle and enriched end members. The enriched end member has isotopic characteristics of rocks derived from old crustal terrains, such as the Winnipeg River and Opatica subprovinces. This type of isotopic heterogeneity could be the result of crustal contamination or derivation from metasomatized mantle. Contamination of the mantle wedge by influx of fluids derived from partial melting of isotopically evolved, subducted sediments is favoured for the Superior Province potassic suite, because elevated concentration of Sr, Nd, and Pb in conjunction with primitive Mg#s suggest only limited crustal contamination has occurred.


Sign in / Sign up

Export Citation Format

Share Document