scholarly journals Permian felsic volcanic rocks in the Pannonian Basin (Hungary): new petrographic, geochemical, and geochronological results

2019 ◽  
Vol 109 (1) ◽  
pp. 101-125 ◽  
Author(s):  
Máté Szemerédi ◽  
Réka Lukács ◽  
Andrea Varga ◽  
István Dunkl ◽  
Sándor Józsa ◽  
...  

AbstractTwo distinct Permian volcanic epochs were revealed in the Pannonian Basin (eastern Central Europe) by U–Pb zircon geochronology: an older one (~ 281 Ma, Cisuralian) in the ALCAPA Mega-unit (Central Transdanubia, Hungary) and a younger volcanic episode (~ 267–260 Ma, Guadalupian) in the Tisza Mega-unit (Southern Transdanubia and the eastern Pannonian Basin, Hungary). The former is represented by dacitic subvolcanic rocks (dykes) and lavas, while the latter is dominantly by crystal-rich rhyolitic–rhyodacitic/dacitic ignimbrites and subordinate rhyodacitic/dacitic lavas. Whole-rock (major and trace element) geochemical data and zircon U–Pb ages suggest close relationship between the samples of Central Transdanubia and volcanic rocks of the Northern Veporic Unit (Western Carpathians, Slovakia), both being part of the ALCAPA Mega-unit. Such correlation was also revealed between the Permian felsic volcanic rocks of the Apuseni Mts (Romania) and the observed samples of Southern Transdanubia and the eastern Pannonian Basin that are parts of the Tisza Mega-unit. The older volcanic rocks (~ 281–265 Ma) could be linked to post-orogenic tectonic movements, however, the youngest samples (~ 260 Ma, eastern Pannonian Basin, Tisza Mega-unit) could be formed in the extensional setting succeeding the post-collisional environment. On the whole, the observed Permian magmatic rocks show significant similarity with those of the Western Carpathians.

2020 ◽  
Author(s):  
Máté Szemerédi ◽  
Réka Lukács ◽  
Andrea Varga ◽  
István Dunkl ◽  
Ioan Seghedi ◽  
...  

<p>In the Carpathian–Pannonian region (Pannonian Basin, Hungary and the Apuseni Mts, Romania) several Late Paleozoic magmatic episodes were revealed by zircon U-Pb geochronology. These events were genetically controlled by a post-collisional to extensional tectonic regime and occurred along the European Variscan Orogenic Belt. Detailed geochronological and geochemical information about the products of this magmatism play crucial role in the regional correlation studies which is the main goal of our research.</p><p>In the Tisza Mega-unit, including southern Transdanubia and the eastern Pannonian Basin (Hungary) as well as the Apuseni Mts (Romania), Permian felsic (dominantly rhyodacitic-dacitic) ignimbrites are common. In the western–central part of the Apuseni Mts, they are accompanied by basaltic and subordinate andesitic lavas, corresponding to a bimodal volcanic suite. Cogenetic plutonic (granites, diorites, gabbros) and subvolcanic rocks (felsic–intermediate dykes) occur in the SW part of the Apuseni Mts, Highiş massif. Immobile element features (REE patterns and multi-element spider diagrams) are similar for all of the aforementioned rock types, suggesting fractional crystallization from a common or similar source. Zircon U-Pb ages of this cogenetic rock assemblage overlap each other and fall within a ~10 Myr long time-span (269–259 Ma, Guadalupian). In contrast to the previous assumptions, the Permian felsic volcanites in the Tisza Mega-unit are not in connection with the granitoid rocks known in the basement of the eastern Pannonian Basin (e.g., Battonya granite). Based on our new data, the granitoids represent a Variscan (~356 Ma, Mississippian) plutonic body.</p><p>The dacitic subvolcanic rocks (dykes) and lavas in the ALCAPA Mega-unit, Central Transdanubia (Hungary) represent an older (~281 Ma, Cisuralian) and geochemically distinct volcanic episode than the magmatism in the Tisza Mega-unit. Associated plutonic rocks, however, are not known in the study area.</p><p>Regarding a broader correlation, the zircon U-Pb ages of the studied Permian plutonic and volcanic rocks of the Tisza Mega-unit are significantly younger than the ages of other well-studied parts of the Central European Variscides (e.g., Intra-Sudetic Basin, NE Germany) where much older ages were identified (300–280 Ma). On the other hand, felsic volcanic rocks of the ALCAPA Mega-unit do not differ from the aforementioned parts of the European Variscides in age. Based on whole-rock geochemistry and zircon geochronology, all of the observed Permian magmatic rocks show similarity with the Permian felsic volcanites of the Western Carpathians (Slovakia). Some further assumptions have been raised: (1) felsic volcanic rocks of the Tisza Mega-unit could correlate with similar rocks of the Southern Gemeric (Vozárová et al. 2009) and Silicic Units (Ondrejka et al. 2018) of the ALCAPA Mega-unit, while (2) the studied samples of Central Transdanubia might be in relationship with the felsic volcanites of the Northern Veporic Unit, ALCAPA Mega-unit (Vozárová et al. 2016). This study was financed by NRDIF (K131690).</p><p>Ondrejka, M., Li, X.H., Vojtko, R., Putiš, M., Uher, P., Sobocký, T. (2018). Geol Carpath 69(2):187–198.</p><p>Vozárová, A., Šmelko, M., Paderin, I. (2009). Geol Carpath 60(6):439–448.</p><p>Vozárová, A., Rodionov, N., Vozár, J., Lepekhina, E., Šarinová, K. (2016). Geol Carpath 61:221–237.</p>


2020 ◽  
Vol 63 (1) ◽  
pp. 1-18
Author(s):  
Máté Szemerédi ◽  
Andrea Varga ◽  
János Szepesi ◽  
Elemér Pál-Molnár ◽  
Réka Lukács

AbstractPermian felsic volcanic rocks were encountered in petroleum exploration boreholes in SE Hungary (eastern Pannonian Basin, Tisza Mega-unit, Békés–Codru Unit) during the second half of the 20th century. They were considered to be predominantly lavas (the so-called “Battonya quartz-porphyry”) and were genetically connected to the underlying “Battonya granite.” New petrographic observations, however, showed that the presumed lavas are crystal-poor (8–20 vol%) rhyolitic ignimbrites near Battonya and resedimented pyroclastic or volcanogenic sedimentary rocks in the Tótkomlós and the Biharugra areas, respectively. The studied ignimbrites are usually massive, matrix-supported, fiamme-bearing lapilli tuffs with eutaxitic texture as a result of welding processes. Some samples lack vitroclastic matrix and show low crystal breakage, but consist of oriented, devitrified fiammes as well. Textural features suggest that the latter are high-grade rheomorphic ignimbrites.Felsic volcanic rocks in SE Hungary belong to the Permian volcanic system of the Tisza Mega-unit; however, they show remarkable petrographic differences as compared to the other Permian felsic volcanic rocks of the mega-unit. In contrast to the crystal-poor rhyolitic ignimbrites of SE Hungary with rare biotite, the predominantly rhyodacitic–dacitic pyroclastic rocks of the Tisza Mega-unit are crystal-rich (40–45 vol%) and often contain biotite, pyroxene, and garnet. Additionally, some geochemical and geochronological differences between them were also observed by previous studies. Therefore, the Permian felsic volcanic rocks in SE Hungary might represent the most evolved, crystal-poor rhyolitic melt of a large-volume felsic (rhyodacitic–dacitic) volcanic system.The Permian volcanic rocks of the studied area do not show any evident correlations with either the Permian felsic ignimbrites in the Finiş Nappe (Apuseni Mts, Romania), as was supposed so far, or the similar rocks in any nappe of the Codru Nappe System. Moreover, no relevant plutonic–volcanic connection was found between the studied samples and the underlying “Battonya granite.”


2021 ◽  
Vol 97 (4) ◽  
pp. 351-362
Author(s):  
V. S. Hedge ◽  
Fernando Corfu ◽  
Hartwig E. Frimmel ◽  
R. H. Sawkar ◽  
M. M. Korkoppa

Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 655
Author(s):  
Hanzhi Chen ◽  
Mingcai Hou ◽  
Fuhao Xiong ◽  
Hongwei Tang ◽  
Gangqiang Shao

Miocene felsic magmatic rocks with high Sr/Y ratios are widely distributed throughout the Gangdese belt of southern Tibet. These provide a good opportunity to explore the magmatic process and deep dynamic mechanisms that occurred after collision between the Indo and the Asian plates. In this paper, felsic volcanic rocks from the Zongdangcun Formation in the Wuyu Basin in the central part of the southern Gangdese belt are used to disclose their origin. Zircon U-Pb geochronology analysis shows that the felsic magmatism occurred at ca. 10.3 ± 0.2 Ma, indicating that the Zongdangcun Formation formed during the Miocene. Most of these felsic magmatic rocks plot in the rhyolite area in the TAS diagram. The rhyolite specimens from the Zongdangcun Formation have the characteristics of high SiO2 (>64%), K2O, SiO2, and Sr contents, a low Y content and a high Sr/Y ratio, and the rocks are rich in LREE and depleted in HREE, showing geochemical affinity to adakitic rocks. The rocks have an enriched Sr-Nd isotopic composition (εNd(t) = −6.76 to −6.68, (87Sr/86Sr)i = 0.7082–0.7088), which is similar to the mixed product of the juvenile Lhasa lower continental crust and the ancient Indian crust. The Hf isotopes of zircon define a wide compositional range (εHf(t) = −4.19 to 6.72) with predominant enriched signatures. The Miocene-aged crustal thickness in southern Tibet, calculated on the basis of the Sr/Y and (La/Yb)N ratios was approximately 60–80 km, which is consistent with the thickening of the Qinghai-Tibet Plateau. The origin of Miocene felsic magmatic rocks with high Sr/Y ratios in the middle section of the Gangdese belt likely involved a partial melting of the thickened lower crust, essentially formed by the lower crust of the Lhasa block, with minor contribution from the ancient Indian crust. After comprehensively analyzing the post-collisional high Sr/Y magmatic rocks (33–8 Ma) collected from the southern margin of the Gangdese belt, we propose that the front edge tearing and segmented subduction of the Indian continental slab may be the major factor driving the east-west trending compositional changes of the Miocene adakitic rocks in southern Tibet.


2021 ◽  
Vol 62 (10) ◽  
pp. 1175-1187
Author(s):  
A.D. Nozhkin ◽  
O.M. Turkina ◽  
K.A. Savko

Abstract —The paper presents results of a petrogeochemical and isotope–geochronological study of the granite–leucogranite association of the Pavlov massif and felsic volcanics from the Elash graben (Biryusa block, southwest of the Siberian craton). A characteristic feature of the granite–leucogranites is their spatial and temporal association with vein aplites and pegmatites of the East Sayan rare-metal province. The U–Pb age of zircon from granites of the Pavlov massif (1852 ± 5 Ma) is close to the age of the pegmatites of the Vishnyakovskoe rare-metal deposit (1838 ± 3 Ma). The predominant biotite porphyritic granites and leucogranites of the Pavlov massif show variable alkali ratios (K2O/Na2O = 1.1–2.3) and ferroan (Fe*) index and a peraluminous composition; they are comparable with S-granites. The studied rhyolites of the Tagul River (SiO2 = 71–76%) show a low ferroan index, a high K2O/Na2O ratio (1.6–4.0), low (La/Yb)n values (4.3–10.5), and a clear Eu minimum (Eu/Eu* = 0.3–0.5); they are similar to highly fractionated I-granites. All coeval late Paleoproterozoic (1.88–1.85 Ga) granites and felsic volcanics of the Elash graben have distinct differences in composition, especially in the ferroan index and HREE contents, owing to variations in the source composition and melting conditions during their formation at postcollisions extension. The wide range of the isotope parameters of granites and felsic volcanic rocks (εNd from +2.0 to –3.7) and zircons (εHf from +3.0 to +0.8, granites of the Toporok massif) indicates the heterogeneity of the crustal basement of the Elash graben, which formed both in the Archean and in the Paleoproterozoic.


2010 ◽  
Vol 47 (12) ◽  
pp. 1481-1506 ◽  
Author(s):  
Vicki McNicoll ◽  
Gerry Squires ◽  
Andrew Kerr ◽  
Paul Moore

The Duck Pond Cu–Zn–Pb–Ag–Au deposit in Newfoundland is hosted by volcanic rocks of the Cambrian Tally Pond group in the Victoria Lake supergroup. In conjunction with the nearby Boundary deposit, it contains 4.1 million tonnes of ore at 3.3% Cu, 5.7% Zn, 0.9% Pb, 59 g/t Ag, and 0.9 g/t Au. The deposits are hosted by altered felsic flows, tuffs, and volcaniclastic sedimentary rocks, and the sulphide ores formed in part by pervasive replacement of unconsolidated host rocks. U–Pb geochronological studies confirm a long-suspected correlation between the Duck Pond and Boundary deposits, which appear to be structurally displaced portions of a much larger mineralizing system developed at 509 ± 3 Ma. Altered aphyric flows in the immediate footwall of the Duck Pond deposit contained no zircon for dating, but footwall stringer-style and disseminated mineralization affects rocks as old as 514 ± 3 Ma at greater depths below the ore sequence. Unaltered mafic to felsic volcanic rocks that occur structurally above the orebodies were dated at 514 ± 2 Ma, and hypabyssal intrusive rocks that cut these were dated at 512 ± 2 Ma. Some felsic samples contain inherited (xenocrystic) zircons with ages of ca. 563 Ma. In conjunction with Sm–Nd isotopic data, these results suggest that the Tally Pond group was developed upon older continental or thickened arc crust, rather than in the ensimatic (oceanic) setting suggested by previous studies.


Sign in / Sign up

Export Citation Format

Share Document