Resistance among selected wild soybean and associated soybean accessions against two virulent colonies of Aphis glycines (Hemiptera: Aphididae)

2020 ◽  
Author(s):  
Louis S. Hesler ◽  
Earl Taliercio
Keyword(s):  
Author(s):  
S J Bhusal ◽  
R L Koch ◽  
A J Lorenz

Abstract Soybean aphid (Aphis glycines Matsumura (Hemiptera: Aphididae)) has been a major pest of soybean in North America since its detection in this continent in 2000 and subsequent spread. Although several aphid resistance genes have been identified, at least four soybean aphid biotypes have been discovered, with three of them being virulent on soybean cultivars with certain soybean aphid resistance genes. These biotypes are known to vary across years and locations, but information on their variation within single fields is limited. An investigation was conducted to study the variation of soybean aphid biotypes within single townships and fields in Minnesota. Screening of 28 soybean aphid isolates collected from seven soybean fields (six soybean fields in Cairo and Wellington Townships of Renville County, MN and one field in Wilmar Township of Kandiyohi County, MN) revealed the existence of multiple known biotypes of soybean aphid within single fields of soybean. We found up to three biotypes of soybean aphid in a single field. Two biotypes were found in five fields while only one field had only a single biotype. Three isolates presented reactions on a panel of resistant and susceptible indicator lines that were different from known biotypes. These results highlight the importance of characterizing soybean aphid biotypes in small geographical areas and utilizing generated knowledge to develop soybean cultivars pyramided with multiple resistance genes. The outcome will be decreased use of insecticides, thereby improving economic and environmental sustainability of soybean production.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1001
Author(s):  
Jagadeesh Sundaramoorthy ◽  
Gyu Tae Park ◽  
Hyun Jo ◽  
Jeong-Dong Lee ◽  
Hak Soo Seo ◽  
...  

The enzyme flavonoid 3′,5′-hydroxylase (F3′5′H) plays an important role in producing anthocyanin pigments in soybean. Loss of function of the W1 locus encoding F3′5′H always produces white flowers. However, few color variations have been reported in wild soybean. In the present study, we isolated a new color variant of wild soybean accession (IT261811) with pinkish-white flowers. We found that the flower’s pinkish-white color is caused by w1-s3, a single recessive allele of W1. The SNP detected in the mutant caused amino acid substitution (A304S) in a highly conserved SRS4 domain of F3′5′H proteins. On the basis of the results of the protein variation effect analyzer (PROVEAN) tool, we suggest that this mutation may lead to hypofunctional F3′5′H activity rather than non-functional activity, which thereby results in its pinkish-white color.


2019 ◽  
Vol 27 (5) ◽  
pp. 1019-1030 ◽  
Author(s):  
Ling Wang ◽  
Ying‐Dong Bi ◽  
Ming Liu ◽  
Wei Li ◽  
Miao Liu ◽  
...  

Author(s):  
Do Young Kim ◽  
Jin Ho Heo ◽  
In Soon Pack ◽  
Jung-Ho Park ◽  
Min Shik Um ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
pp. 35-43
Author(s):  
Awatsaya Chotekajorn ◽  
Takuyu Hashiguchi ◽  
Masatsugu Hashiguchi ◽  
Hidenori Tanaka ◽  
Ryo Akashi

AbstractWild soybean (Glycine soja) is a valuable genetic resource for soybean improvement. Seed composition profiles provide beneficial information for the effective conservation and utilization of wild soybeans. Therefore, this study aimed to assess the variation in free amino acid abundance in the seeds of wild soybean germplasm collected in Japan. The free amino acid content in the seeds from 316 accessions of wild soybean ranged from 0.965 to 5.987 mg/g seed dry weight (DW), representing a 6.2-fold difference. Three amino acids had the highest coefficient of variation (CV): asparagine (1.15), histidine (0.95) and glutamine (0.94). Arginine (0.775 mg/g DW) was the predominant amino acid in wild soybean seeds, whereas the least abundant seed amino acid was glutamine (0.008 mg/g DW). A correlation network revealed significant positive relationships among most amino acids. Wild soybean seeds from different regions of origin had significantly different levels of several amino acids. In addition, a significant correlation between latitude and longitude of the collection sites and the total free amino acid content of seeds was observed. Our study reports diverse phenotypic data on the free amino acid content in seeds of wild soybean resources collected from throughout Japan. This information will be useful in conservation programmes for Japanese wild soybean and for the selection of accessions with favourable characteristics in future legume crop improvement efforts.


Sign in / Sign up

Export Citation Format

Share Document