scholarly journals In Vitro Detoxification of Aflatoxin B1, Deoxynivalenol, Fumonisins, T-2 Toxin and Zearalenone by Probiotic Bacteria from Genus Lactobacillus and Saccharomyces cerevisiae Yeast

2019 ◽  
Vol 12 (1) ◽  
pp. 289-301 ◽  
Author(s):  
Agnieszka Chlebicz ◽  
Katarzyna Śliżewska
2004 ◽  
Vol 70 (10) ◽  
pp. 6306-6308 ◽  
Author(s):  
S. Gratz ◽  
H. Mykkänen ◽  
A. C. Ouwehand ◽  
R. Juvonen ◽  
S. Salminen ◽  
...  

ABSTRACT Several probiotics are known to bind aflatoxin B1 (AFB1) to their surfaces and to adhere to intestinal mucus. In this study, preincubation of two probiotic preparations with either AFB1 or mucus reduced the subsequent surface binding of mucus and AFB1, respectively, in a strain-dependent manner.


2005 ◽  
Vol 68 (11) ◽  
pp. 2470-2474 ◽  
Author(s):  
S. GRATZ ◽  
H. MYKKÄNEN ◽  
H. EL-NEZAMI

Aflatoxin B1 (AFB1) is a well-known carcinogen and reducing its bioavailability is of great interest for human and animal health. Several probiotic bacteria are able to bind AFB1 in vitro, including Lactobacillus rhamnosus LC-705 and Propionibacterium freudenreichii subsp. shermanii JS. A mixture of these two probiotics is used by the food and feed industry as biopreservative (Bioprofit), making it a promising candidate for future applications. Consequently, this study aims to investigate the in vitro and ex vivo ability of this probiotic mixture to bind AFB1. For in vitro experiments, probiotic mixture was suspended in an AFB1 solution (5 μM), incubated for 1 to 30 min, centrifuged, and AFB1 residues were quantitated in supernatant and pellet. For ex vivo experiments, duodenal loops of chicks were ligated and injected with either AFB1 solution alone or probiotic mixture suspension and AFB1 solution. Lumen content was centrifuged and AFB1 was quantitated in supernatant and pellet. Additionally, AFB1 was extracted from duodenal tissue to calculate tissue uptake. In vitro, 57 to 66% of AFB1 was removed from the solution by the probiotic mixture, but only 38 to 47% could be extracted from the bacterial surface. In ex vivo experiments, only up to 25% of AFB1 was bound by bacteria, and tissue uptake of AFB1 was significantly reduced when probiotic bacteria were present in the duodenal loop. Furthermore, the effect of intestinal mucus on the bacterial binding ability was investigated in vitro and was found to significantly reduce AFB1 binding by the probiotic mixture. However, probiotic mixture could only retard but not prevent AFB1 absorption in duodenal loops. Further work needs to assess the potential of probiotics in different experimental setups.


Food Control ◽  
2015 ◽  
Vol 47 ◽  
pp. 298-300 ◽  
Author(s):  
Bruna Leonel Gonçalves ◽  
Roice Eliana Rosim ◽  
Carlos Augusto Fernandes de Oliveira ◽  
Carlos Humberto Corassin

2020 ◽  
Vol 72 (3) ◽  
pp. 862-870
Author(s):  
R.E.E. Pinheiro ◽  
A.M.D. Rodrigues ◽  
C.E. Lima ◽  
J.T.O. Santos ◽  
C.M. Pereyra ◽  
...  

ABSTRACT The aim of this study was to evaluate in vitro the probiotic potential and absorption of Saccharomyces cerevisiae for the aflatoxin B1 in simulated fish intestinal tract conditions. Three yeast strains were used, two from brewery: S. cerevisiae RC1 and S. cerevisiae RC3 and one from a fish farming environment: S. cerevisiae A8L2. The selected yeasts were subjected to the following in vitro tests: homologous inhibition, self-aggregation, co-aggregation, antibacterial activity, gastrointestinal conditions tolerance and adsorption of AFB1. All S. cerevisiae strains showed good capability of self-aggregation and co-aggregation with pathogenic bacteria. All yeast strains were able to survive the gastrointestinal conditions. In acidic conditions, the factors (strain vs. time) had interaction (P=0.0317), resulting in significant variation among the strains tested in the time periods analyzed. It was observed that there was also interaction (P=0.0062) in intestinal conditions, with an increased number of cells in the 12-hour period for all strains tested. In the adsorption test, the A8L2 strain was statistically more effective (P<0.005) for both AFB1 concentrations evaluated in this study (10 and 25ng/mL). Thus, it was observed that the strains of S. cerevisiae have potential probiotic and adsorbent of AFB1.


Toxins ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 209
Author(s):  
Alexandros Yiannikouris ◽  
Juha Apajalahti ◽  
Osmo Siikanen ◽  
Gerald Patrick Dillon ◽  
Colm Anthony Moran

Mycotoxins are naturally occurring toxins that can affect livestock health and performance upon consumption of contaminated feedstuffs. To mitigate the negative effects of mycotoxins, sequestering agents, adsorbents, or binders can be included to feed to interact with toxins, aiding their passage through the gastrointestinal tract (GI) and reducing their bioavailability. The parietal cell wall components of Saccharomyces cerevisiae have been found to interact in vitro with mycotoxins, such as, but not limited to, aflatoxin B1 (AFB1), and to improve animal performance when added to contaminated diets in vivo. The present study aimed to examine the pharmacokinetics of the absorption of radiolabeled AFB1 in rats in the presence of a yeast cell wall-based adsorbent (YCW) compared with that in the presence of the clay-based binder hydrated sodium calcium aluminosilicate (HSCAS). The results of the initial pharmacokinetic analysis showed that the absorption process across the GI tract was relatively slow, occurring over a matter of hours rather than minutes. The inclusion of mycotoxin binders increased the recovery of radiolabeled AFB1 in the small intestine, cecum, and colon at 5 and 10 h, revealing that they prevented AFB1 absorption compared with a control diet. Additionally, the accumulation of radiolabeled AFB1 was more significant in the blood plasma, kidney, and liver of animals fed the control diet, again showing the ability of the binders to reduce the assimilation of AFB1 into the body. The results showed the potential of YCW in reducing the absorption of AFB1 in vivo, and in protecting against the damaging effects of AFB1 contamination.


Sign in / Sign up

Export Citation Format

Share Document