Wetting behavior of CaO-Al2O3-based mold flux with various BaO and MgO contents on the steel substrate

Author(s):  
Lejun Zhou ◽  
Hao Luo ◽  
Wanlin Wang ◽  
Houfa Wu ◽  
Erzhuo Gao ◽  
...  
2013 ◽  
Vol 133 (4) ◽  
pp. 126-127 ◽  
Author(s):  
Shota Hosokawa ◽  
Motoaki Hara ◽  
Hiroyuki Oguchi ◽  
Hiroki Kuwano

2017 ◽  
Vol 48 (12) ◽  
pp. 1077-1088
Author(s):  
Yukihiro Yonemoto ◽  
Tomoaki Kunugi
Keyword(s):  

2020 ◽  
Vol 32 (4) ◽  
pp. 042015
Author(s):  
Alireza Mostajeran ◽  
Reza Shoja-Razavi ◽  
Morteza Hadi ◽  
Mohammad Erfanmanesh ◽  
Hadi Karimi

Author(s):  
J Downing ◽  
A Hook

Two steel substrate test panels were developed to represent common plate thicknesses found on naval vessels and scanned using the Babcock developed ultrasonic technique. One sample comprised of a series of slotted surface breaking flaws of varying widths and through thicknesses to represent fracturing/cracking. The inspection method detected simulated cracking to a depth of 2mm and 0.5mm in width. The second sample included numerous loss of wall thickness areas of varying diameters and through thicknesses, with the smallest detectable loss of wall thickness being 0.1mm at a 15mm diameter. After proving confidence in detection, there was a need to characterise flaws to provide support and ascertain a repair action. Samples were produced that were subjected to either impact or heat exposure to induce realistic representative damage. The practical ultrasonic method was successfully used to independently characterise between the samples, with induced de-laminations caused by blisters, and multi layered matrix cracking caused by varying levels of projectile impacts, due to their unique morphology.


2019 ◽  
Vol 24 (4) ◽  
pp. 51-58
Author(s):  
Le Hong Quan ◽  
Nguyen Van Chi ◽  
Mai Van Minh ◽  
Nong Quoc Quang ◽  
Dong Van Kien

The study examines the electrochemical properties of a coating based on water sodium silicate and pure zinc dust (ZSC, working title - TTL-VN) using the Electrochemical Impedance Spectra (EIS) with AutoLAB PGSTAT204N. The system consists of three electrodes: Ag/AgCl (SCE) reference electrode in 3 M solution of KCl, auxiliary electrode Pt (8x8 mm) and working electrodes (carbon steel with surface treatment up to Sa 2.5) for determination of corrosion potential (Ecorr) and calculation of equivalent electric circuits used for explanation of impedance measurement results. It was shown that electrochemical method is effective for study of corrosion characteristics of ZSC on steel. We proposed an interpretation of the deterioration over time of the ability of zinc particles in paint to provide cathodic protection for carbon steel. The results show that the value of Ecorr is between -0,9 and -1,1 V / SCE for ten days of diving. This means that there is an electrical contact between the zinc particles, which provides good cathodic protection for the steel substrate and most of the zinc particles were involved in the osmosis process. The good characteristics of the TTL-VN coating during immersion in a 3,5% NaCl solution can also be explained by the preservation of corrosive zinc products in the coating, which allows the creation of random barrier properties.


1987 ◽  
Vol 73 (3) ◽  
pp. 484-490 ◽  
Author(s):  
Seiji YOKOYAMA ◽  
Yoshimoto WANIBE ◽  
Hiroshi SAKAO
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 951
Author(s):  
Tomáš Primus ◽  
Josef Hlavinka ◽  
Pavel Zeman ◽  
Jan Brajer ◽  
Martin Šorm ◽  
...  

The lifetime and properties of cutting tools and forming moulds can be prolonged and enhanced by the deposition of hard, thin coatings. After a certain period of usage, the coating will deteriorate. Any remaining coating must be removed prior to successful recoating. Laser stripping is a fast and environmentally friendly coating removal method. In this paper, we present laser removal of two types of coatings deposited on a 1.2379 tool steel substrate, namely, an AlTiN coating with high hardness and a DLC C coating with a small coefficient of friction (COF). A powerful nanosecond laser was employed to remove the coating from the substrate with high efficiency, along with suitable residual surface roughness. Measurements were taken of surface roughness, removed depth, and working time on a stripped area of 1 cm2. The samples were evaluated under a microscope, with a 3D profilometer, and by EDS chemical analysis. Successful removal of the coating was confirmed by optical analysis, but detailed chemical characterisation showed that about 30% of the coating element may remain on the surface. Moreover, a working time of less than 7.5 s per cm2 was obtained in this study. In addition, it was shown that the application of a second low energy, high frequency laser beam pass leads to remelting of the peaks of the material and reduced surface roughness.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 720
Author(s):  
Bogdan Antoszewski ◽  
Hubert Danielewski ◽  
Jan Dutkiewicz ◽  
Łukasz Rogal ◽  
Marek St. Węglowski ◽  
...  

This article presents the results of the metal deposition process using additive materials in the form of filler wire and metal powder. An important problem in wire deposition using a CO2 laser was overcome by using a combination of the abovementioned methods. The deposition of a multicomponent alloy—Inconel 625—on a basic substrate such as structural steel is presented. The authors propose a new approach for stopping carbon and iron diffusion from the substrate, by using the Semi-Hybrid Deposition Method (S-HDM) developed by team members. The proposed semi-hybrid method was compared with alternative wire and powder deposition using laser beam. Differences of S-HDM and classic wire deposition and powder deposition methods are presented using metallographic analysis, within optic and electron microscopy. Significant differences in the obtained results reveal advantages of the developed method compared to traditional deposition methods. A comparison of the aforementioned methods performed using nickel based super alloy Inconel 625 deposited on low carbon steel substrate is presented. An alternative prototyping approach for an advanced high alloy materials deposition using CO2 laser, without the requirement of using the same substrate was presented in this article. This study confirmed the established assumption of reducing selected components diffusion from a substrate via buffer layer. Results of metallographic analysis confirm the advantages and application potential of using the new semi-hybrid method for prototyping high alloy materials on low alloy structural steel substrate.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 609
Author(s):  
Guangjie Feng ◽  
Manqin Liu ◽  
Yalei Liu ◽  
Zhouxin Jin ◽  
Yifeng Wang ◽  
...  

The wetting of Ag-5 wt.% CuO (Ag-5CuO) alloy on initial/CuO-coated zirconia toughened alumina (ZTA) composite ceramic in air was studied in detail. The results showed that the contact angle of the Ag-5CuO/ZTA system rapidly decreased from 81° at 970 °C to 45° at 990 °C during the heating process, however, moderate reductions in contact angle were observed in the subsequent heating and temperature holding stages. In comparison with the contact angle of pure Al2O3, an increment of about 4° of the stable contact angle of Ag-5CuO alloy on the heterogeneous ZTA was observed. The reaction between Al2O3 and CuO can reduce the damage of the CuO-rich liquid to ZrO2 in the ZTA substrate. Both oxygen and CuO were helpful in reducing the contact angle of Ag on ZTA and enhancing the bonding of the Ag/ZTA interface. The continuous CuO coating on ZTA and the monotectic liquid containing more CuO in the region near the triple line induced reductions of more than 40° and about 10° in the contact angle, respectively, between the initial and the CuO coating-improved wetting systems.


Sign in / Sign up

Export Citation Format

Share Document