scholarly journals A SiGe-Source Doping-Less Double-Gate Tunnel FET: Design and Analysis Based on Charge Plasma Technique with Enhanced Performance

Silicon ◽  
2021 ◽  
Author(s):  
Varun Mishra ◽  
Yogesh Kumar Verma ◽  
Santosh Kumar Gupta ◽  
Vikas Rathi
2021 ◽  
Author(s):  
Varun Mishra ◽  
Yogesh Kumar Verma ◽  
Santosh Kumar Gupta ◽  
Vikas Rathi

Abstract In this article, a distinctive charge plasma (CP) technique is employed to design two doping-less dual gate tunnel field effect transistors (DL-DG-TFETs) with Si0.5Ge0.5 and Si as source material. The CP methodology resolves the issues of random doping fluctuation and doping activation. The analog and RF performance has been investigated for both the proposed devices i.e. Si0.5Ge0.5 source DL-DG-TFET and Si-source DL-DG-TFET in terms of drive current, transconductance, cut-off frequency. In addition, the linearity and distortion analysis has been carried out for both the proposed devices with respect to higher order transconductance (gm2 and gm3), VIP2, IMD3, and HD2. The Si0.5Ge0.5 source DL-DG-TFET has better performance characteristics and reliability in compare to Si-source DL-DG-TFET owing to low energy bandgap material and higher mobility. The switching ratio obtained for Si0.5Ge0.5 source DL-DG-TFET is order of 5×1014 that makes it a suitable contender for low power applications.


Sign in / Sign up

Export Citation Format

Share Document