scholarly journals Effect of Sodium Silicate and Salicylic Acid on Sodium and Potassium Ratio in Wheat (Triticum aestivum L.) Grown Under Salt Stress

Silicon ◽  
2021 ◽  
Author(s):  
Ayesha Mushtaq ◽  
Nazish Sabir ◽  
Tasneem Kousar ◽  
Sabeena Rizwan ◽  
Uzma Jabeen ◽  
...  
2021 ◽  
Author(s):  
Ayesha Mushtaq ◽  
Nazish Sabir ◽  
Tasneem Kousar ◽  
Sabeena Rizwan ◽  
Uzma Jabeen ◽  
...  

Abstract Purpose Salinity pose severe threat to cultivation as it drastically affects the plant sustainability and yield. The intended aim of current consensus is to assess effects of sodium silicate and salicylic acid on wheat genotypes (slat tolerant and salt sensitive) grown under salt. Methods This experiment was designed to check the effect of silicon on wheat varieties, so four different wheat genotypes named as (Umeed, Rasco, Zarghoon and Shahkaar) were grown in hydroponics under saline and normal environment. Sodium silicate and salicylic acid were applied on all varieties to determine the slat tolerance ability. Plants were harvested at maturity and different physical and chemical aspects were recorded. Results To assess the salt stress on growth and yield of wheat genotypes. Wheat grown in saline conditions with sodium silicate supplementation showed improvement in all growth parameters as compared to the plants grown under salt stress without silicon supplementation. Higher contents of potassium were observed in plants grown under salt stress with silicon supplementation however, potassium concentration was found less in salicylic acid treatment and control under salt stress. Sodium concentration was found higher under salt stress but sodium silicate application reduced Na+ uptake under salt stress. Significance increase in K+ : Na+ ratio in roots enhance the translocation which in turn elevates salt tolerance ability. Among wheat varieties potassium uptake was quite high in Umeed and Rasco as compared to Zarghoon and Shahkar. Conclusion Based on current results it can be deduced that application of sodium silicate on different wheat varieties mitigated Na+ toxicity by elevating K+: Na+ ratio and net translocation rate in salt stressed plants.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zebus Sehar ◽  
Noushina Iqbal ◽  
M. Iqbal R. Khan ◽  
Asim Masood ◽  
Md. Tabish Rehman ◽  
...  

AbstractEthylene plays a crucial role throughout the life cycle of plants under optimal and stressful environments. The present study reports the involvement of exogenously sourced ethylene (as ethephon; 2-chloroethyl phosphonic acid) in the protection of the photosynthetic activity from glucose (Glu) sensitivity through its influence on the antioxidant system for adaptation of wheat (Triticum aestivum L.) plants under salt stress. Ten-day-old plants were subjected to control and 100 mM NaCl and treated with 200 µl L−1 ethephon on foliage at 20 days after seed sowing individually or in combination with 6% Glu. Plants receiving ethylene exhibited higher growth and photosynthesis through reduced Glu sensitivity in the presence of salt stress. Moreover, ethylene-induced reduced glutathione (GSH) production resulted in increased psbA and psbB expression to protect PSII activity and photosynthesis under salt stress. The use of buthionine sulfoximine (BSO), GSH biosynthesis inhibitor, substantiated the involvement of ethylene-induced GSH in the reversal of Glu-mediated photosynthetic repression in salt-stressed plants. It was suggested that ethylene increased the utilization of Glu under salt stress through its influence on photosynthetic potential and sink strength and reduced the Glu-mediated repression of photosynthesis.


Sign in / Sign up

Export Citation Format

Share Document