Protective Effects of Carvacrol on Brain Tissue Inflammation and Oxidative Stress as well as Learning and Memory in Lipopolysaccharide-Challenged Rats

2019 ◽  
Vol 37 (4) ◽  
pp. 965-976 ◽  
Author(s):  
Zhara Hakimi ◽  
Hossein Salmani ◽  
Narges Marefati ◽  
Zohre Arab ◽  
Zahra Gholamnezhad ◽  
...  
2020 ◽  
Vol 21 (8) ◽  
pp. 626-632 ◽  
Author(s):  
Dawei Liu ◽  
Qinghua Wu ◽  
Hongyi Liu ◽  
Changhu Lu ◽  
Chao Gu ◽  
...  

Background: The red-crowned crane (Grus japonensis) is one of the most vulnerable bird species in the world. Mycotoxins are toxic secondary metabolites produced by fungi and considered naturally unavoidable contaminants in animal feed. Our recent survey indicated that the mycotoxins had the potential to contaminate redcrowned crane’s regular diets in China. Objective: This experiment was conducted to investigate the protective effects of mycotoxin binder montmorillonite (Mont) on growth performance, serum biochemistry and oxidative stress parameters of the red-crowned crane. Methods: 16 red-crowned cranes were divided into four groups and fed one of the following diets; a selected diet, regular diet, or the selected diet or regular diet with 0.5% montmorillonite added to the diets. The cranes' parameters of performance, hematology, serum biochemistry and serum oxidative stress were measured. Results: Consuming regular diets decreased the average daily feed intake (ADFI), levels of haemoglobin (Hb), platelet count (PLT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), but increased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine kinase (CK) and lactate dehydrogenase (LDH). The supplementation of 0.5% Mont provided protection for the red-crowned crane in terms of feed intake, serum biochemistry and oxidative stress. Moreover, Mont supplementation had no adverse effect on the health of red-crowned crane. Conclusions: Taken together, these findings suggested that the addition of dietary Mont is effective in improving the health of red-crowned crane.


2020 ◽  
Vol 21 (13) ◽  
pp. 1325-1332
Author(s):  
Mohammad Ahmad ◽  
Gasem M. Abu Taweel

Background: Developmental ethanol (EtOH) exposure can cause lifelong behavioral hyperactivity, cognitive deficits, emotional dysregulation, and more. However, co-treatment with lithium (Li) on the day of EtOH exposure prevents many of the impairments. Methods: Experimental groups of pregnant mice were exposed to EtOH (20% v/v solution at a dose of 2.5 g/kg) in their drinking water and the animals were treated with Li (15 and 30 mg/kg) through IP injection on gestational days14, 16, 18, and 20, and post-natal days (PD) 3, 5, 7, and 9. All treatments with EtOH and exposure to Li doses to pregnant mice started on gestational day 14 and continued until post-natal day 9 (PD9). The effects on some developing morphological indices, nerve reflexes during weaning age, and various cognitive dysfunctions at adolescent ages and biochemical changes in the brain tissue indices of below-mentioned neurotransmitters and oxidative stress in post-natal developing offspring at adolescent age, were studied. Results: Perinatal exposure to EtOH in pregnant mice resulted in several postnatal developing and morphological indices in the developing male pups during their weaning period, like gain in their body weight, delay in appearance of their body hair fuzz and opening of their eyes, and disruptions in their developing motor reflexes. Discussion: During adolescent age, a significant deficit in their learning capability and cognitive behavior, decline in the neurochemical DA and 5-HT in their brain and some indices of oxidative stress TBARS, GSH, GST, CAT, and SOD was observed. Conclusion: These results indicate that Li ameliorates significantly and dose-dependently EtOH induced developmental toxicities like morphological developments and dysfunctions in cognitive retention and oxidative stress on a long-term basis in brain tissue. However, further detailed studies are required for the clinical use of as an ameliorating agent for perinatal EtOH induced dysfunctions.


2016 ◽  
Vol 35 (12) ◽  
pp. 1252-1263 ◽  
Author(s):  
SS Palabiyik ◽  
E Karakus ◽  
Z Halici ◽  
E Cadirci ◽  
Y Bayir ◽  
...  

Acetaminophen (APAP) overdose could induce liver damage and lead to acute liver failure. The treatment of APAP overdoses could be improved by new therapeutic strategies. Thymus spp., which has many beneficial effects and has been used in folk medicine, is one such potential strategy. In the present study, the hepatoprotective activity of the main constituents of Thymus spp., carvacrol and thymol, were evaluated in light of APAP-induced hepatotoxicity. We hoped to understand the hepatoprotective mechanism of these agents on the antioxidant system and pro-inflammatory cytokines in vitro. Dose-dependent effects of thymol and carvacrol (25, 50, and 100 µM) were tested on cultured HepG2 cells. N-Acetylcysteine (NAC) was tested as positive control. We showed that APAP inhibited HepG2 cell growth by inducing inflammation and oxidative stress. Incubating APAP-exposed HepG2 cells with carvacrol and thymol for 24 h ameliorated this inflammation and oxidative stress. We also evaluated alanine transaminase and lactate dehydrogenase levels of HepG2 cells. We found that thymol and carvacrol protected against APAP-induced toxicity in HepG2 cells by increasing antioxidant activity and reducing pro-inflammatory cytokines, such as tumor necrosis factor α and interleukin 1β. Taking together high-dose thymol and carvacrol treatment has an effect close to NAC treatment in APAP toxicity, but thymol has better treatment effect than carvacrol.


2018 ◽  
Vol 46 (1) ◽  
pp. 301-308 ◽  
Author(s):  
Ning Xie ◽  
Na Geng ◽  
Dong Zhou ◽  
Yuliang Xu ◽  
Kangping Liu ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Haijun Zhao ◽  
Yanhui He

Diabetic retinopathy (DR), as a major cause of blindness worldwide, is one common complication of diabetes mellitus. Inflammatory response and oxidative stress injury of endothelial cells play significant roles in the pathogenesis of DR. The study is aimed at investigating the effects of lysophosphatidylcholine (LPC) on the dysfunction of high glucose- (HG-) treated human retinal microvascular endothelial cells (HRMECs) after being cocultured with bone marrow mesenchymal stem cells (BMSCs) and the underlying regulatory mechanism. Coculture of BMSCs and HRMECs was performed in transwell chambers. The activities of antioxidant-related enzymes and molecules of oxidative stress injury and the contents of inflammatory cytokines were measured by ELISA. Flow cytometry analyzed the apoptosis of treated HRMECs. HRMECs were further treated with 10-50 μg/ml LPC to investigate the effect of LPC on the dysfunction of HRMECs. Western blotting was conducted to evaluate levels of TLR4 and p-NF-κB proteins. We found that BMSCs alleviated HG-induced inflammatory response and oxidative stress injury of HRMECs. Importantly, LPC offsets the protective effects of BMSCs on inflammatory response and oxidative stress injury of HRMECs. Furthermore, LPC upregulated the protein levels of TLR4 and p-NF-κB, activating the TLR4/NF-κB signaling pathway. Overall, our study demonstrated that LPC offsets the protective effects of BMSCs on inflammatory response and oxidative stress injury of HRMECs via TLR4/NF-κB signaling.


2014 ◽  
Vol 70 (3) ◽  
pp. 713-723 ◽  
Author(s):  
Mohamed Salah Allagui ◽  
Anouer Feriani ◽  
Zouhour Bouoni ◽  
Hichem Alimi ◽  
Jean Claud Murat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document