scholarly journals A Fully Automatic Calibration System for Hydrometers in NIM

MAPAN ◽  
2021 ◽  
Author(s):  
Jintao Wang ◽  
Xiang Liu ◽  
Wencai Shi ◽  
Changhong Xu

AbstractHydrometers are widely used in industry for liquid density measurement. It is important to achieve rapid and high accuracy calibration for hydrometers. Based on the Archimedes principle, a fully automatic hydrometer calibration system in NIM was designed using Cuckow’s method. The liquid density of n-tridecane (C13H28)is calibrated with 441 g high-purity fused silica ring as the solid density standard. The buoyancy of hydrometer is measured by static weighing system with resolution 0.01 mg. The alignment between liquid surface and hydrometer scale was achieved by the lifting platform with the positioning accuracy of 10 μm. According to the weighing value of hydrometer in air and liquid, the density correction value at different scales is calculated. Hydrometer covering a full range (650–1500) kg/m3can be calibrated without changing the liquid. Taking the calibration data of PTB as reference, the experimental data show that the measurement uncertainty of this system is better than 0.3 division (k = 2).

1986 ◽  
Vol 76 ◽  
Author(s):  
John B. Warren

ABSTRACTCollaborative work between Brookhaven and Los Alamos National Laboratories is developing a new type of linear accelerator that uses a high-power, picosecond pulse CO2 laser to irradiate a specialized form of grating with a pitch of 10.6 microns. The electromagnetic field that results can be used to accelerate electrons at field gradients of several GeV/m with potential efficiencies much better than current accelerators. The grating must be conductive to minimize resistive losses, be able to withstand high fields without damage, and requires dimensional tolerances in the sub-micron range. These requirements focus attention on grating material selection, microfabrication methods, and metrological methods used for quality control. At present, several types of gratings have been manufactured by reactive ion etching of fused silica in CHF 3/Ar or etching silicon with KOH/H 2O or ethylenediamine-pyrocatechol solutions. Metrological analysis of the gratings has begun with a Tracor Northern 5700 digital image analyzer.


2017 ◽  
Vol 1 (T1) ◽  
pp. 106-113
Author(s):  
Kien Thach Trung Vo ◽  
Tam Duc Hoang ◽  
Nguyen Hoang Vo ◽  
Chuong Dinh Huynh ◽  
Thanh Thien Tran ◽  
...  

In this work, a gamma scattering technique using 137Cs (5mCi) source with the NaI(Tl) detector is arranged to record the scattered photon beam at scattering angle of 1200 for investigating the liquid density. We used standard liquid such as water, H2SO4, HCl, glycerol, HNO3, ethanol and A92 petrol to fit the single scattering peak, multiple scattering, and total counts versus standard liquid densities. The interpolating of the single scattering peak, multiple scattering, and total counts of the testing sample at scattering angle of 1200 is 0.702 g.cm-3, 0.783 g.cm-3, and 0.747 g.cm-3, respectively. The discrepancy of the experiment and true testing density is about 8 %, 3 %, and 2 %, respectively. The result shows that multiple scattering or total counts can be used to propose the density measurement.


2021 ◽  
Author(s):  
Hayfa Zayani ◽  
Youssef Fouad ◽  
Didier Michot ◽  
Zeineb Kassouk ◽  
Zohra Lili-Chabaane ◽  
...  

<p>Visible-Near Infrared (Vis-NIR) spectroscopy has proven its efficiency in predicting several soil properties such as soil organic carbon (SOC) content. In this preliminary study, we explored the ability of Vis-NIR to assess the temporal evolution of SOC content. Soil samples were collected in a watershed (ORE AgrHys), located in Brittany (Western France). Two sampling campaigns were carried out 5 years apart: in 2013, 198 soil samples were collected respectively at two depths (0-15 and 15-25 cm) over an area of 1200 ha including different land use and land cover; in 2018, 111 sampling points out of 198 of 2013 were selected and soil samples were collected from the same two depths. Whole samples were analyzed for their SOC content and were scanned for their reflectance spectrum. Spectral information was acquired from samples sieved at 2 mm fraction and oven dried at 40°C, 24h prior to spectra acquisition, with a full range Vis-NIR spectroradiometer ASD Fieldspec®3. Data set of 2013 was used to calibrate the SOC content prediction model by the mean of Partial Least Squares Regression (PLSR). Data set of 2018 was therefore used as test set. Our results showed that the variation ∆SOC<sub>obs</sub><sub></sub>obtained from observed values in 2013 and 2018 (∆SOC<sub>obs</sub> = Observed SOC (2018) - Observed SOC (2013)) is ranging from 0.1 to 25.9 g/kg. Moreover, our results showed that the prediction performance of the calibrated model was improved by including 11 spectra of 2018 in the 2013 calibration data set (R²= 0.87, RMSE = 5.1 g/kg and RPD = 1.92). Furthermore, the comparison of predicted and observed ∆SOC between 2018 and 2013 showed that 69% of the variations were of the same sign, either positive or negative. For the remaining 31%, the variations were of opposite signs but concerned mainly samples for which ∆SOCobs is less than 1,5 g/kg. These results reveal that Vis-NIR spectroscopy was potentially appropriate to detect variations of SOC content and are encouraging to further explore Vis-NIR spectroscopy to detect changes in soil carbon stocks.</p>


2021 ◽  
Vol 56 (3) ◽  
pp. 035026
Author(s):  
Milan S Kovačević ◽  
Marko M Milošević ◽  
Željko M Cimbaljević

2020 ◽  
Vol 18 (12) ◽  
pp. 889-893
Author(s):  
Kalyan Biswas

In this work, a simple but versatile sensing system for very accurate sensing of liquid level and liquid density is presented. The sensor works based on basic strain sensitivity of Fiber Bragg Grating (FBG) and principle of liquid obeying Archimedes’ law of buoyancy. In this system, a cylindrical shaped mass suspended from a Fiber Bragg Grating and partially immersed in the liquid to be sensed. If the liquid level in the container or liquid density varies, that change the up thrust on the suspended mass and load on the Fiber will be changed accordingly. The change in the load on Fiber changes strain on the FBG and the reflected Bragg wavelength also changes. The proposed device with proper calibration should be able to carry out real time and nonstop liquid level and liquid density measurements. A mathematical analysis of the system considering liquid properties and geometrical structure of the suspended mass is presented here. Sensitivity of the system for liquid level monitoring is also reported. Achieved results shows the path for the utilization of the proposed sensor system for precise liquid density measurement and liquid level sensing in very large storage tanks used for commercial/residential applications.


Sign in / Sign up

Export Citation Format

Share Document