Low-latency cloud-fog network architecture and its load balancing strategy for medical big data

Author(s):  
Jin Yang
2020 ◽  
Vol 11 (1) ◽  
pp. 61
Author(s):  
Stavros Souravlas ◽  
Sofia Anastasiadou ◽  
Stefanos Katsavounis

An important as well as challenging task in modern applications is the management and processing with very short delays of large data volumes. It is quite often, that the capabilities of individual machines are exceeded when trying to manage such large data volumes. In this regard, it is important to develop efficient task scheduling algorithms, which reduce the stream processing costs. What makes the situation more difficult is the fact that the applications as well as the processing systems are prone to changes during runtime: processing nodes may be down, temporarily or permanently, more resources may be needed by an application, and so on. Therefore, it is necessary to develop dynamic schedulers, which can effectively deal with these changes during runtime. In this work, we provide a fast and fair task migration policy while maintaining load balancing and low latency times. The experimental results have shown that our scheme offers better load balancing and reduces the overall latency compared to the state of the art strategies, due to the stepwise communication and the pipeline based processing it employs.


2017 ◽  
Vol 1 (1) ◽  
pp. 28
Author(s):  
Fadia Shah ◽  
Jianping Li ◽  
Raheel Ahmed Memon

New era is the age of 5G. The network has moved from the simple internet connection towards advanced LTE connections and transmission. The information and communication technology has reshaped telecommunication. For this, among many types of big data, Medical Big Data is one of the most sensitive forms of data. Wavelet is a technical tool to reduce the size of this data to make it available for the user for more time. It is also responsible for low latency and high speed data transmission over the network. The key concern is the Medical Big Data should be accurate and reliable enough so that the recommended treatment should be the concerned one. This paper proposed the scheme to support the concept of data availability without losing crucial information, via Wavelet the Medical Data compression and through SDN supportive architecture by making data availability over the wireless network. Such scheme is in favor of the efficient use of technology for the benefit of human beings in the support of medical treatments.


2019 ◽  
Vol 12 (1) ◽  
pp. 42 ◽  
Author(s):  
Andrey I. Vlasov ◽  
Konstantin A. Muraviev ◽  
Alexandra A. Prudius ◽  
Demid A. Uzenkov

Author(s):  
Istabraq M. Al-Joboury ◽  
Emad H. Al-Hemiary

Fog Computing is a new concept made by Cisco to provide same functionalities of Cloud Computing but near to Things to enhance performance such as reduce delay and response time. Packet loss may occur on single Fog server over a huge number of messages from Things because of several factors like limited bandwidth and capacity of queues in server. In this paper, Internet of Things based Fog-to-Cloud architecture is proposed to solve the problem of packet loss on Fog server using Load Balancing and virtualization. The architecture consists of 5 layers, namely: Things, gateway, Fog, Cloud, and application. Fog layer is virtualized to specified number of Fog servers using Graphical Network Simulator-3 and VirtualBox on local physical server. Server Load Balancing router is configured to distribute the huge traffic in Weighted Round Robin technique using Message Queue Telemetry Transport protocol. Then, maximum message from Fog layer are selected and sent to Cloud layer and the rest of messages are deleted within 1 hour using our proposed Data-in-Motion technique for storage, processing, and monitoring of messages. Thus, improving the performance of the Fog layer for storage and processing of messages, as well as reducing the packet loss to half and increasing throughput to 4 times than using single Fog server.


2018 ◽  
Author(s):  
Phanidra Palagummi ◽  
Vedant Somani ◽  
Krishna M. Sivalingam ◽  
Balaji Venkat

Networking connectivity is increasingly based on wireless network technologies, especially in developing nations where the wired network infrastructure is not accessible to a large segment of the population. Wireless data network technologies based on 2G and 3G are quite common globally; 4G-based deployments are on the rise during the past few years. At the same time, the increasing high-bandwidth and low-latency requirements of mobile applications has propelled the Third Generation Partnership Project (3GPP) standards organization to develop standards for the next generation of mobile networks, based on recent advances in wireless communication technologies. This standard is called the Fifth Generation (5G) wireless network standard. This paper presents a high-level overview of the important architectural components, of the advanced communication technologies, of the advanced networking technologies such as Network Function Virtualization and other important aspects that are part of the 5G network standards. The paper also describes some of the common future generation applications that require low-latency and high-bandwidth communications.


2020 ◽  
Vol 22 (5) ◽  
pp. 51-55
Author(s):  
OLEG N. KORCHAGIN ◽  
◽  
ANASTASIA V. LYADSKAYA ◽  

The article is devoted to the current state of digitalization aimed at solving urgent problems of combating corruption in the field of public administration and private business sector. The work considers the experience of foreign countries and the influence of digital technologies on the fight against corruption. It is noted that the digitalization of public administration is becoming one of the decisive factors for increasing the efficiency of the anti-corruption system and improving management mechanisms. Big Data, if integrated and structured according to the given parameters, allows the implementation of legislative, law enforcement, control and supervisory and law enforcement activities reliably and transparently. Big Data tools allow us to analyze processes, identify dependencies and predict corruption risks. The author describes the most significant problems that complicate the transfer of offline technologies into the online environment. The paper analyzes promising directions for the development of digital technologies that would lead to solving the arising problems, as well as to implement tasks that previously seemed unreachable. The article also describes current developments in the field of collecting and managing large amounts of data, the “Internet of Things”, modern network architecture, and other advances in the field of IT; the work provides applied examples of their potential use in the field of combating corruption. The study gives reasons that, in the context of combating corruption, digitalization should be allocated in a separate area of activity that is controlled and regulated by the state.


Sign in / Sign up

Export Citation Format

Share Document