Estimation of global radiation in China and comparison with satellite product

2013 ◽  
Vol 70 (4) ◽  
pp. 1681-1687 ◽  
Author(s):  
Wenwu Qing ◽  
Rensheng Chen ◽  
Weimin Sun
2018 ◽  
Author(s):  
Youssef Wehbe ◽  
Marouane Temimi ◽  
Michael Weston ◽  
Naira Chaouch ◽  
Oliver Branch ◽  
...  

Abstract. This study investigates an extreme weather event that impacted the United Arab Emirates (UAE) in March 2016 using the Weather Research and Forecasting (WRF) model version 3.7.1 coupled with its hydrological modeling extension package (Hydro). Six-hourly forecasted forcing records at 0.5o spatial resolution, obtained from the NCEP Global Forecast System (GFS), are used to drive the three nested downscaling domains of both standalone WRF and coupled WRF/WRF-Hydro configurations for the recent flood-triggering storm. Ground and satellite observations over the UAE are employed to validate the model results. Precipitation, soil moisture, and cloud fraction retrievals from GPM (30-minute, 0.1o product), AMSR2 (daily, 0.1o product), and MODIS (daily, 5 km product), respectively, are used to assess the model output. The Pearson correlation coefficient (PCC), relative bias (rBIAS) and root-mean-square error (RMSE) are used as performance measures. Results show reductions of 24 % and 13 % in RMSE and rBIAS measures, respectively, in precipitation forecasts from the coupled WRF/WRF-Hydro model configuration, when compared to standalone WRF. The coupled system also shows improvements in global radiation forecasts, with reductions of 45 % and 12 % for RMSE and rBIAS, respectively. Moreover, WRF-Hydro was able to simulate the spatial distribution of soil moisture reasonably well across the study domain when compared to AMSR2 satellite soil moisture estimates, despite a noticeable dry/wet bias in areas where soil moisture is high/low. The demonstrated improvement, at the local scale, implies that WRF-Hydro coupling may enhance hydrologic forecasts and flash flood guidance systems in the region.


Biologia ◽  
2014 ◽  
Vol 69 (11) ◽  
Author(s):  
Miloslav Šír ◽  
Miroslav Tesař ◽  
Ľubomír Lichner ◽  
Henryk Czachor

AbstractOscillations of the air temperature and tensiometric pressure of the soil water were measured in the experimental slope Tomšovka (Czech Republic, Jizera Mts, 822 m a.s.l.). The brown forest soil (Dystric Cambisols) is covered with Calamagrostis villosa, Avenella flexuosa and Vaccinium myrtilus. Thermometers were placed at a height of 5 and 200 cm above the grassland. The tensiometer was installed in the root zone of grass at a depth of 15 cm. Oscillations in a cloudless day, August 24, 2001, (sunshine duration 12.1 hour/day, daily total of global radiation 22.4 MJ/m2/day, maximum intensity of global radiation 1008 W/m2, transpiration 13.7 MJ/m2/day) were analysed in detail. The oscillations with a period of about 30 to 60 minutes were recorded in the air temperature course taken from 11 am to 5 pm. At the height of 200 cm oscillations ranged from 24 to 28°C. Concurrently, in the depth of 15 cm, the oscillations of tensiometric pressure in the range of −6 to −11 kPa were recorded from 8 am to 4 pm. It was concluded that the oscillations in the air temperature resulted from autonomous and self-regulated oscillations in the intensity of transpiration. It is evident that the 2-m air temperature was significantly influenced by transpiration of plants around the large area. The fact that the air temperature oscillated sharply confirms that the rate of transpiration was synchronized in this area. Vegetative cover thus created a self-regulated superorganism that substantially affected the temperature of the near-ground atmosphere layer.


2005 ◽  
Vol 128 (1) ◽  
pp. 104-117 ◽  
Author(s):  
T. Muneer ◽  
S. Munawwar

Solar energy applications require readily available, site-oriented, and long-term solar data. However, the frequent unavailability of diffuse irradiation, in contrast to its need, has led to the evolution of various regression models to predict it from the more commonly available data. Estimating the diffuse component from global radiation is one such technique. The present work focuses on improvement in the accuracy of the models for predicting horizontal diffuse irradiation using hourly solar radiation database from nine sites across the globe. The influence of sunshine fraction, cloud cover, and air mass on estimation of diffuse radiation is investigated. Inclusion of these along with hourly clearness index, leads to the development of a series of models for each site. Estimated values of hourly diffuse radiation are compared with measured values in terms of error statistics and indicators like, R2, mean bias deviation, root mean square deviation, skewness, and kurtosis. A new method called “the accuracy score system” is devised to assess the effect on accuracy with subsequent addition of each parameter and increase in complexity of equation. After an extensive evaluation procedure, extricate but adequate models are recommended as optimum for each of the nine sites. These models were found to be site dependent but the model types were fairly consistent for neighboring stations or locations with similar climates. Also, this study reveals a significant improvement from the conventional k-kt regression models to the presently proposed models.


2014 ◽  
Vol 14 (17) ◽  
pp. 8961-8981 ◽  
Author(s):  
Q. T. Nguyen ◽  
M. K. Christensen ◽  
F. Cozzi ◽  
A. Zare ◽  
A. M. K. Hansen ◽  
...  

Abstract. Anthropogenic emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) may affect concentration levels and composition of biogenic secondary organic aerosols (BSOA) through photochemical reactions with biogenic organic precursors to form organosulfates and nitrooxy organosulfates. We investigated this influence in a field study from 19 May to 22 June, 2011 at two sampling sites in Denmark. Within the study, we identified a substantial number of organic acids, organosulfates and nitrooxy organosulfates in the ambient urban curbside and semi-rural background air. A high degree of correlation in concentrations was found among a group of specific organic acids, organosulfates and nitrooxy organosulfates, which may originate from various precursors, suggesting a common mechanism or factor affecting their concentration levels at the sites. It was proposed that the formation of those species most likely occurred on a larger spatial scale, with the compounds being long-range transported to the sites on the days with the highest concentrations. The origin of the long-range transported aerosols was investigated using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model in addition to modeled emissions of related precursors, including isoprene and monoterpenes using the global Model of Emissions of Gases and Aerosols from Nature (MEGAN) and SO2 emissions using the European Monitoring and Evaluation Program (EMEP) database. The local impacts were also studied by examining the correlation between selected species, which showed significantly enhanced concentrations at the urban curbside site and the local concentrations of various gases, including SO2, ozone (O3), NOx, aerosol acidity and other meteorological conditions. This investigation showed that an inter-play of the local parameters such as the aerosol acidity, NOx, SO2, relative humidity (RH), temperature and global radiation seemed to affect the concentration level of those species, suggesting the influence of aqueous aerosol chemistry. The local impacts, however, seemed minor compared to the regional impacts. The total concentrations of organosulfates and nitrooxy organosulfates, on average, contributed to approximately 0.5–0.8% of PM1 mass at the two sampling sites.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Boluwaji M. Olomiyesan ◽  
Onyedi D. Oyedum

In this study, the performance of three global solar radiation models and the accuracy of global solar radiation data derived from three sources were compared. Twenty-two years (1984–2005) of surface meteorological data consisting of monthly mean daily sunshine duration, minimum and maximum temperatures, and global solar radiation collected from the Nigerian Meteorological (NIMET) Agency, Oshodi, Lagos, and the National Aeronautics Space Agency (NASA) for three locations in North-Western region of Nigeria were used. A new model incorporating Garcia model into Angstrom-Prescott model was proposed for estimating global radiation in Nigeria. The performances of the models used were determined by using mean bias error (MBE), mean percentage error (MPE), root mean square error (RMSE), and coefficient of determination (R2). Based on the statistical error indices, the proposed model was found to have the best accuracy with the least RMSE values (0.376 for Sokoto, 0.463 for Kaduna, and 0.449 for Kano) and highest coefficient of determination, R2 values of 0.922, 0.938, and 0.961 for Sokoto, Kano, and Kaduna, respectively. Also, the comparative study result indicates that the estimated global radiation from the proposed model has a better error range and fits the ground measured data better than the satellite-derived data.


2021 ◽  
Author(s):  
Christoph Stähle ◽  
Monika Mayer ◽  
Christian Schmidt ◽  
Jessica Kult ◽  
Vinzent Klaus ◽  
...  

<p>As the production of ozone in surface air is determined by ambient temperature and by the prevalent chemical regime, a very different temperature dependence of ozone production emerges for nitrogen oxides (NO<sub>x</sub>) and volatile organic compounds (VOC) limited regions. In this study we evaluated the temperature sensitivity of ozone production for rural, suburban as well as urban sites in Austria on seasonal basis. The analysis is based on 30 years of observational data from Austrian monitoring networks for the time period 1990 – 2019. Reductions in precursor emissions as observed in 2020 in Austria due to the pandemic will be used to test the obtained results. Surface ozone, NO<sub>x</sub>, daily sums of global radiation and minimum daily temperature are used as covariates in our study. The observed NO<sub>x</sub> to VOC ratio at individual sites is variable over time due to changes in precursor emissions and/or the variability of meteorological parameters such as mixing layer height. At the site level we relate the temperature sensitivity of ozone production to the daily mean NO<sub>x</sub> mixing ratio and the daily minimum temperature. This information allows us to determine the impact of past/future temperature changes on surface ozone abundance in the context of reductions of NO<sub>x</sub> emissions and changing methane backgrounds.</p>


2017 ◽  
Vol 38 (4Supl1) ◽  
pp. 2363
Author(s):  
Rodrigo Dlugosz da Silva ◽  
Marcelo Augusto de Aguiar e Silva ◽  
Marcelo Giovanetti Canteri ◽  
Juliandra Rodrigues Rosisca ◽  
Nilson Aparecido Vieira Junior

Aiming at assessing the performance of alternative methods to Penman-Monteith FAO56 for estimating the reference evapotranspiration (ETo) for Londrina, Paraná, Brazil, the methods temperature radiation, Hicks-Hess, Hargreaves-Samani (1982), Turc, Priestley-Taylor, Tanner-Pelton, Jensen-Haise, Makkink, modified Hargreaves, Stephens-Stewart, Abtew, global radiation, Ivanov, Lungeon, Hargreaves-Samani (1985), Benavides-Lopez, original Penman, Linacre, Blaney-Morin, Romanenko, Hargreaves (1974), McCloud, Camargo, Hamon, Kharrufa, McGuiness-Bordne, and Blaney-Criddle were compared to that standard method recommended by FAO. The estimations were correlated by linear regression and assessed by using the Person’s correlation coefficient (r), concordance index (d), and performance index (c) using a set of meteorological data of approximately 40 years. The methods modified Hargreaves, Stephens-Stewart, Abtew, global radiation, Ivanov, Lungeon, Hargreaves-Samani (1985), Benavides-Lopez, original Penman, and Linacre should be avoided, as they did not present excellent results. The methods McCloud, Camargo, Hamon, Kharrufa, McGuinness-Bordne, Blaney-Criddle, Hargreaves (1974), Romanenko, and Blaney-Morin were classified as very bad, not being recommended. In contrast, the methods temperature radiation, Hicks-Hess, Hargreaves-Samani (1982), Turc, Priestley-Taylor, Tenner-Pelton, Jensen-Haise, and Makkink presented excellent performance indices and can be applied in the study region.


Solar Energy ◽  
2004 ◽  
Author(s):  
Ramiro L. Rivera ◽  
Karim Altaii

Solar radiation was measured and recorded on a 5-minute, hourly and daily basis at a number of sites on the Caribbean island of Puerto Rico (located from 18° to 18° 30’N latitude and from 65° 30’ to 67° 15’W longitude) over a 24 calendar month time frame. The global solar radiation was measured at four sites (namely: Aguadilla, Ponce, Gurabo, and San Juan). The global solar radiation data was measured by an Eppley Precision Spectral Pyranometer (model PSP) mounted on a horizontal surface. This pyranometer is sensitive to solar radiation in the range of 0.285 ≤ λ ≤ 2.8 μm wavelengths. Statistical analysis such as the daily average, monthly average hourly, monthly average daily, and annual average daily global radiation are presented in this paper. Despite its small size, a 13 percent variation in the global solar radiation has been observed within the island. Reasonable solar radiation values, for solar energy conversion system installation, seem to exist at and possibly around Aguadilla.


Sign in / Sign up

Export Citation Format

Share Document