Investigation of critical hydraulic gradient and its application to the design and construction of bentonite-grout curtain

2019 ◽  
Vol 78 (12) ◽  
Author(s):  
Larry Pax Chegbeleh ◽  
Thomas Mba Akabzaa ◽  
John Apambilla Akudago ◽  
Sandow Mark Yidana
2021 ◽  
Vol 9 (3) ◽  
pp. 270
Author(s):  
Meiyun Tang ◽  
Yonggang Jia ◽  
Shaotong Zhang ◽  
Chenxi Wang ◽  
Hanlu Liu

The silty seabed in the Yellow River Delta (YRD) is exposed to deposition, liquefaction, and reconsolidation repeatedly, during which seepage flows are crucial to the seabed strength. In extreme cases, seepage flows could cause seepage failure (SF) in the seabed, endangering the offshore structures. A critical condition exists for the occurrence of SF, i.e., the critical hydraulic gradient (icr). Compared with cohesionless sands, the icr of cohesive sediments is more complex, and no universal evaluation theory is available yet. The present work first improved a self-designed annular flume to avoid SF along the sidewall, then simulated the SF process of the seabed with different consolidation times in order to explore the icr of newly deposited silty seabed in the YRD. It is found that the theoretical formula for icr of cohesionless soil grossly underestimated the icr of cohesive soil. The icr range of silty seabed in the YRD was 8–16, which was significantly affected by the cohesion and was inversely proportional to the seabed fluidization degree. SF could “pump” the sediments vertically from the interior of the seabed with a contribution to sediment resuspension of up to 93.2–96.8%. The higher the consolidation degree, the smaller the contribution will be.


2009 ◽  
Vol 2 (5) ◽  
pp. 421-429 ◽  
Author(s):  
Johannes Linortner ◽  
Gerald Jung ◽  
Gerald Zenz

Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Qian Yin ◽  
Hongwen Jing ◽  
Richeng Liu ◽  
Guowei Ma ◽  
Liyuan Yu ◽  
...  

The mechanism and quantitative descriptions of nonlinear fluid flow through rock fractures are difficult issues of high concern in underground engineering fields. In order to study the effects of fracture geometry and loading conditions on nonlinear flow properties and normalized transmissivity through fracture networks, stress-dependent fluid flow tests were conducted on real rock fracture networks with different number of intersections (1, 4, 7, and 12) and subjected to various applied boundary loads (7, 14, 21, 28, and 35 kN). For all cases, the inlet hydraulic pressures ranged from 0 to 0.6 MPa. The test results show that Forchheimer’s law provides an excellent description of the nonlinear fluid flow in fracture networks. The linear coefficient a and nonlinear coefficient b in Forchheimer’s law J=aQ+bQ2 generally decrease with the number of intersections but increase with the boundary load. The relationships between a and b can be well fitted with a power function. A nonlinear effect factor E=bQ2/(aQ+bQ2) was used to quantitatively characterize the nonlinear behaviors of fluid flow through fracture networks. By defining a critical value of E = 10%, the critical hydraulic gradient was calculated. The critical hydraulic gradient decreases with the number of intersections due to richer flowing paths but increases with the boundary load due to fracture closure. The transmissivity of fracture networks decreases with the hydraulic gradient, and the variation process can be estimated using an exponential function. A mathematical expression T/T0=1-exp⁡(-αJ-0.45) for decreased normalized transmissivity T/T0 against the hydraulic gradient J was established. When the hydraulic gradient is small, T/T0 holds a constant value of 1.0. With increasing hydraulic gradient, the reduction rate of T/T0 first increases and then decreases. The equivalent permeability of fracture networks decreases with the applied boundary load, and permeability changes at low load levels are more sensitive.


Water ◽  
2017 ◽  
Vol 9 (10) ◽  
pp. 787 ◽  
Author(s):  
Yu Wang ◽  
Changhong Li ◽  
Yanzhi Hu ◽  
Yonggang Xiao

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 3) ◽  
Author(s):  
Hanqing Yang ◽  
Xiaolin Wang ◽  
Liyuan Yu ◽  
Richeng Liu

Abstract The influences of contact shape and contact area on nonlinear fluid flow properties through fractures are investigated by solving Navier-Stokes equations. The evolutions of nonlinear relationships between flow rate and hydraulic pressure drop, Forchheimer coefficients, nonlinear factor, critical hydraulic gradient, distributions of flow streamlines, and tracer flow paths at different times are systematically estimated. The results show that the nonlinear relationships between flow rate and hydraulic pressure drop can be well described by Forchheimer’s law, in which the nonlinear term coefficient b is approximately three orders of magnitude larger than the linear term coefficient a. The smaller contact area corresponds to smaller variations in many aspects such as flow rate, critical hydraulic gradient, flow streamlines, and tracer flow paths. The critical hydraulic gradient decreases with the increasing degree of contact shape variations while the contacts have the same mean area. The increase in hydraulic pressure drop can induce significant eddies and decrease the permeability and/or conductivity of fractures. However, the distributions of streamlines and tracer flow paths are not dramatically disturbed under a large hydraulic pressure drop.


Sign in / Sign up

Export Citation Format

Share Document