Assessment of Grain Size and Grain Refinement Efficiency by Calculation of Released Heat Attributed to Formation of Primary Aluminum Crystals During Solidification of Al7Si4Cu Alloy

Author(s):  
Aleksandar M. Mitrašinović ◽  
Dejan B. Momčilović ◽  
Zoran Odanović
Author(s):  
Jiawei Yang ◽  
Yijiang Xu ◽  
Sarina Bao ◽  
Shahid Akhtar ◽  
Ulf Tundal ◽  
...  

AbstractIt is well known that the filtration efficiency of ceramic foam filters (CFF) on aluminum melt can be significantly reduced by the addition of grain refiner particles under a high inclusion load. Also, it is usually considered that the filtration process has little impact on grain refinement efficiency. In this work, the influence of inclusions and filtration on the grain refinement effect of AA 6060 alloy has been studied. This was done through TP-1 type solidification experiments where the aluminum melt prior to and after the filter during a pilot-scale filtration test was investigated. In the experiments, 80 PPi CFFs were used to filtrate aluminum melt with an ultra-high inclusion load and two addition levels of Al–3Ti–1B master alloys. It is found that both inclusions and filtration significantly reduce the grain refinement efficiency of the grain refiner master alloys. A detailed characterization of the used filters shows that the reduction of grain refinement efficiency is due to the strong adherence of TiB2 particles to the oxide films, which are blocked by the CFF during filtration. A grain size prediction model based on deterministic nucleation mechanisms and dendritic growth kinetics has been applied to calculate the solidification grain size and estimate the loss of effective grain refiner particles during filtration. It is shown that due to the strong adherence between TiB2 particles and oxide films in the melt, the high addition level of aluminum chips also has an influence on reducing the grain refinement efficiency of aluminum melt without filtration. The results of this study extended our understanding of the behavior and performance of inoculant particles in CFF and their interactions with the inclusions.


2014 ◽  
Vol 703 ◽  
pp. 56-59
Author(s):  
Xiao Ying Liu ◽  
Hao Ran Geng ◽  
Min Zuo ◽  
Peng Fei Ji

This article reports the effect of MnCO3addition on the grain refinement efficiency of AZ91 magnesium alloy. The results indicate that the addition of MnCO3has excellent grain refining efficiency for AZ91 alloy, which is mainly attributed to the Al4C3particles formed in the melt, besides Mn is indispensable to grain refinement in Al-bearing magnesium alloys. There is an optimal addition amount of 0.6% at 740 °C and the grain size is reduced from 245 to 91 μm. At the same time, the corrosion resistance performance of MnCO3-added AZ91is improved.


2015 ◽  
Vol 828-829 ◽  
pp. 23-28 ◽  
Author(s):  
Vadakke Madam Sreekumar ◽  
N. Hari Babu ◽  
Dmitry G. Eskin ◽  
Z. Fan

In this study, grain refinement efficiency of a new oxide master alloy based on MgAl2O4 was demonstrated in Al alloys. The grain size of the reference alloy was reduced by 50-60% with the addition of the master alloy and introduction of ultrasonic cavitation. While cooling rate has an influence on the grain size reduction, higher levels of addition of master alloy was found to be not effective in further reducing the grain size.


2014 ◽  
Vol 794-796 ◽  
pp. 155-160 ◽  
Author(s):  
Vadakke Madam Sreekumar ◽  
Nadendla Hari Babu ◽  
Dmitry G. Eskin ◽  
Zhong Yun Fan

In this study, grain refinement efficiency of a new oxide master alloy based on MgAl2O4was demonstrated on an A357 alloy. The grain size of the reference alloy was reduced by 50-60% with the addition of the master alloy and introduction of ultrasonic cavitation. A higher addition of master alloy was found to be not benificial in further reducing the grain size.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 806
Author(s):  
Liqing Sun ◽  
Shuai Sun ◽  
Haiping Zhou ◽  
Hongbin Zhang ◽  
Gang Wang ◽  
...  

In this work, vanadium particles (VP) were utilized as a novel reinforcement of AZ31 magnesium (Mg) alloy. The nanocrystalline (NC) AZ31–VP composites were prepared via mechanical milling (MM) and vacuum hot-press sintering. During the milling process, the presence of VP contributed to the cold welding and fracture mechanism, resulting in the acceleration of the milling process. Additionally, increasing the VP content accelerated the grain refinement of the matrix during the milling process. After milling for 90 h, the average grain size of AZ31-X wt % Vp (X = 5, 7.5, 10) was refined to only about 23 nm, 19 nm and 16 nm, respectively. In the meantime, VP was refined to sub-micron scale and distributed uniformly in the matrix, exhibiting excellent interfacial bonding with the matrix. After the sintering process, the average grain size of AZ31-X wt % VP (X = 5, 7.5, 10) composites still remained at the NC scale, which was mainly caused by the pinning effect of VP. Besides that, the porosity of the sintered composites was no more than 7.8%, indicating a good densification effect. As a result, there was little difference between the theoretical and real density. Compared to as-cast AZ31 Mg alloy, the microhardness of sintered AZ31-X wt % VP (X = 5, 7.5, 10) composites increased by 65%, 87% and 96%, respectively, owing to the strengthening mechanisms of grain refinement strengthening, Orowan strengthening and load-bearing effects.


Author(s):  
Jiawei Yang ◽  
Sarina Bao ◽  
Shahid Akhtar ◽  
Yanjun Li

AbstractIn this work, a systematic study on the interactions between aluminum oxide films and TiB2 grain refiner particles and their effect on grain refinement behavior have been conducted. Oxide films were introduced into a commercial purity aluminum melt by adding AA 6061 alloy chips while the grain refiner particles were introduced by adding Al-3T-1B master alloy. Strong sedimentation of TiB2 grain refiner particles was observed in aluminum melt without chip addition during long-time settling. Most of the TiB2 particles were settled and accumulated at the bottom of crucible. In contrast, the sedimentation of TiB2 particles is much less in the melt with the addition of oxide films. A large fraction of TiB2 particles were found to be adhered to the oxide films located at the top part of the crucible, which inhibited the sedimentation of grain refiner particles. TP-1 type tests were also done to study the grain refinement efficiency of Al-3Ti-1B master alloy under different melt cleanliness and settling time. It is found that sedimentation of TiB2 particles greatly reduces the grain refinement efficiency. The introduction of oxide films seems to slightly alleviate the fading effect. This is owing to the strong adherence between the oxide films and TiB2 particles, which leads to a retardation of particle sedimentation.


2013 ◽  
Vol 749 ◽  
pp. 407-413
Author(s):  
Hong Xu ◽  
Xin Zhang ◽  
Ji Ping Ren ◽  
Min Peng ◽  
Shi Yang ◽  
...  

The mechanical properties and corrosion performances of the ZL101 alloy modified by the composite master alloy were investigated. The results showed that the master alloy had not only obvious effect of grain refinement, but also a significant role in refining dendrite grain of ZL101 alloy. The grain size decreased dramatically from 150μm to 62μm when the addition of composite master alloy is up to 0.5%(mass fraction) and the temperature is 720 for 30 minutes,. Its tensile strength and elongation increased by 27% and 42% respectively. The grain refinement of ZL101 alloy decreased its corrosion performance. The morphology of Si changed into globular from needle modified by NaF, instead of AlTiB.


Author(s):  
H Jafarzadeh ◽  
K Abrinia

The microstructure evolution during recently developed severe plastic deformation method named repetitive tube expansion and shrinking of commercially pure AA1050 aluminum tubes has been studied in this paper. The behavior of the material under repetitive tube expansion and shrinking including grain size and dislocation density was simulated using the finite element method. The continuous dynamic recrystallization of AA1050 during severe plastic deformation was considered as the main grain refinement mechanism in micromechanical constitutive model. Also, the flow stress of material in macroscopic scale is related to microstructure quantities. This is in contrast to the previous approaches in finite element method simulations of severe plastic deformation methods where the microstructure parameters such as grain size were not considered at all. The grain size and dislocation density data were obtained during the simulation of the first and second half-cycles of repetitive tube expansion and shrinking, and good agreement with experimental data was observed. The finite element method simulated grain refinement behavior is consistent with the experimentally obtained results, where the rapid decrease of the grain size occurred during the first half-cycle and slowed down from the second half-cycle onwards. Calculations indicated a uniform distribution of grain size and dislocation density along the tube length but a non-uniform distribution along the tube thickness. The distribution characteristics of grain size, dislocation density, hardness, and effective plastic strain were consistent with each other.


2013 ◽  
Vol 284-287 ◽  
pp. 147-151
Author(s):  
Tso Fu Mark Chang ◽  
Takashi Nagoshi ◽  
Chiemi Ishiyama ◽  
Tatsuo Sato ◽  
Masato Sone

Ultrathin (2 emulsion (SCE). Incomplete coverage of the Cu plate, the working electrode, by electroplated Ni and non-uniform Ni films with defects were obtained when conventional electroplating at 1 A/dm2 with 30 sec of deposition time was used. When electroplating with SCE (ESCE) was applied, complete coverage, defect-free and uniform UTNFs were obtained. SEM and AFM showed surface morphology of the UTNFs was covered by spherical-shaped particles with ~10 nm in diameter, which was expected to be individual Ni grains because the size was consistent with grain size of Ni films reported when ESCE was applied. High H2 solubility in CO2, periodic-plating-characteristic after applying ESCE, and improved transport efficiency of the reactive species are believed to be the main reasons to cause effects of grain refinement and suppression in formation of the defects. Thickness of the UTNFs was 11.97±1.82 nm when the deposition time was 15 sec, and the thickness increased to 38.45±1.71 nm when the deposition time was increased to 45 sec.


Sign in / Sign up

Export Citation Format

Share Document