The dispersion of surface contaminants by Stokes drift in random waves

2018 ◽  
Vol 37 (7) ◽  
pp. 55-61
Author(s):  
Guoxing Huang ◽  
Wing-Keung Adrian Law
Author(s):  
Yuki Imai ◽  
Junichi Ninomiya ◽  
Nobuhito Mori

The wave-induced velocity, known commonly as Stokes drift, plays an important role on upper ocean current system. However, in general, the depth profile tends to be estimated using a regular wave approximation like calculation from significant wave height in order to simplify the modeling. Breivik et al. (2014) proposed an improved Stokes drift profile to considering random waves but discussed limited to deep water. This study proposes a novel treatment of Stokes drift on random waves to consider full directional spectra and the approximated treatment is introduced into coupled ocean-wave model to apply for the depth-limited region. To validate the proposed treatment, Stokes drift velocity derived from the treatment is theoretically and empirically compared with some derived from regular wave approximation. Finally coastal current simulation is performed for Kii channel of Japan focusing on Tanabe bay by the coupled model with two-way-nesting scheme.


Author(s):  
Yuki IMAI ◽  
Nobuhito MORI ◽  
Junichi NINOMIYA ◽  
Tomohiro YASUDA ◽  
Hajime MASE

2011 ◽  
Vol 670 ◽  
pp. 150-175 ◽  
Author(s):  
MIRANDA HOLMES-CERFON ◽  
OLIVER BÜHLER ◽  
RAFFAELE FERRARI

We present a theoretical and numerical study of horizontal particle dispersion due to random waves in the three-dimensional rotating and stratified Boussinesq system, which serves as a simple model to study the dispersion of tracers in the ocean by the internal wave field. Specifically, the effective one-particle diffusivity in the sense of Taylor (Proc. Lond. Math. Soc., vol. 20, 1921, p. 196) is computed for a small-amplitude internal gravity wave field modelled as a stationary homogeneous and horizontally isotropic Gaussian random field whose frequency spectrum is bounded away from zero. Dispersion in this system does not arise simply because of a Stokes drift effect, as in the case of surface gravity waves, but in addition it is driven by the nonlinear, second-order corrections to the linear velocity field, which can be computed using the methods of wave–mean interaction theory. A formula for the one-particle diffusivity as a function of the spectrum of the random wave field is presented. It is shown that this diffusivity is much smaller than might be expected from heuristic arguments based on the magnitude of the Stokes drift or the pseudomomentum. This appears to stem from certain incompressibility constraints for the Stokes drift and the second-order velocity field. Finally, the theory is applied to oceanic conditions described by a typical model wave spectrum, the Garrett–Munk spectrum, and also by detailed field observations from the North Atlantic tracer release experiment.


2021 ◽  
Vol 9 (2) ◽  
pp. 114
Author(s):  
Dag Myrhaug ◽  
Muk Chen Ong

This article derives the time scale of pipeline scour caused by 2D (long-crested) and 3D (short-crested) nonlinear irregular waves and current for wave-dominant flow. The motivation is to provide a simple engineering tool suitable to use when assessing the time scale of equilibrium pipeline scour for these flow conditions. The method assumes the random wave process to be stationary and narrow banded adopting a distribution of the wave crest height representing 2D and 3D nonlinear irregular waves and a time scale formula for regular waves plus current. The presented results cover a range of random waves plus current flow conditions for which the method is valid. Results for typical field conditions are also presented. A possible application of the outcome of this study is that, e.g., consulting engineers can use it as part of assessing the on-bottom stability of seabed pipelines.


2021 ◽  
Vol 9 (2) ◽  
pp. 142
Author(s):  
Annalisa De Leo ◽  
Laura Cutroneo ◽  
Damien Sous ◽  
Alessandro Stocchino

Microplastic (MP) debris is recognized to be one of the most serious threats to marine environments. They are found in all seas and oceanic basins worldwide, even in the most remote areas. This is further proof that the transport of MPs is very efficient. In the present study, we focus our attention on MPs’ transport owing to the Stokes drift generated by sea waves. Recent studies have shown that the interaction between heavy particles and Stokes drift leads to unexpected phenomena mostly related to inertial effects. We perform a series of laboratory experiments with the aim to directly measure MPs’ trajectories under different wave conditions. The main objective is to quantify the inertial effect and, ultimately, suggest a new analytical formulation for the net settling velocity. The latter formula might be implemented in a larger scale transport model in order to account for inertial effects in a simplified approach.


Wave Motion ◽  
2021 ◽  
Vol 102 ◽  
pp. 102712
Author(s):  
Jan Erik H. Weber ◽  
Kai H. Christensen

2020 ◽  
Vol 92 (8) ◽  
pp. 1227-1237
Author(s):  
Ivan. S. Pytskii ◽  
Irina V. Minenkova ◽  
Elena S. Kuznetsova ◽  
Rinad Kh. Zalavutdinov ◽  
Aleksei V. Uleanov ◽  
...  

AbstractThe article describes a comprehensive mass spectrometric approach to the study of surfaces of structural materials. The combined use of thermal desorption mass spectrometry, gas and liquid chromatography, and laser desorption/ionization mass spectrometry (LDI) to provide information about the surface and surface layers of materials is proposed. The suggested method allows one to determine the thermodynamic characteristics of compounds and surface contaminants adsorbed on surfaces, as well as surface layers, to determine the composition of volatile and non-volatile contaminants on the surface, and to determine the nature of the distribution over the surface of these compounds. The method allows to obtain the most complete information about the surface condition and can be used to predict the life of structural materials.


Sign in / Sign up

Export Citation Format

Share Document