Continuous fluid circulation in Hammam Faraun geothermal system, Gulf of Suez rift, Egypt: evidences from hydrothermal deposits along rift-related faults

2021 ◽  
Vol 36 (3) ◽  
Author(s):  
A. Shawky ◽  
M. I. El-Anbaawy ◽  
N. A. Shallaly ◽  
H. E. Abdelhafiz ◽  
E. N. Shaheen
2021 ◽  
Author(s):  
M. Perret ◽  
M. Gasparrini ◽  
V. Teles ◽  
L. Guglielmetti ◽  
S. Omodeo Salé ◽  
...  

2017 ◽  
Vol 20 ◽  
pp. 57-60 ◽  
Author(s):  
A.M. Al-Mukhtar

Geothermal systems have a big draw as a provider for free thermal energy for electrical generation. The resource based on fracture networks that permit fluid circulation, and allow geothermal heat to be extracted. Most geothermal resources occur in rocks that posses lack fracture permeability and fluid circulation. Hence, the fluid will be heated due to the Hot Dry Rock (HDR). The flow is circulated through the cracks, and extracts the heat to the ground. The emphasis of the simulators is on the HDR and on the development of methods that produce the hydraulic fractures. Linear elastic fracture mechanics approach (LEFM) was used to predict the crack propagation for initial crack. Finite element method (FEM) is used to predict the maximum stress areas, hence, determining the crack initiation.


2020 ◽  
Author(s):  
Domenico Liotta ◽  
Alessandro Agostini ◽  
Eivind Bastesen ◽  
Caterina Bianco ◽  
Chiara Boschi ◽  
...  

<p>The investigation of the deep geothermal systems is a challenging task in active geothermal systems. In order to decrease the mining risk, the study of the analogue exhumed systems sheds light on the relationships between fluid circulation and geological structures through the analyses of faults and ore deposits distributions. In the Las Minas area (Central Mexico), ore deposits are quite diffuse at the boundary between crystalline and sedimentary rocks and in fault zones. This is a consequence of the interaction between cooling of Miocene felsic magmas, hydrothermal fluids and coeval fault activity. We investigated the role of the faults in channeling the hydrothermal fluids by fieldwork and analysis of fractures at outcrops. The field mapping was carried out at 1:10000 scale (60 km2). When possible, kinematic data on recent fault planes influencing the permeability and geothermal fluid paths were collected. This includes information on the main structural trends and the orientation of the intermediate kinematic axis.The evolution and origin of the hydrothermal fluids circulating in the exhumed geothermal system of Las Minas area (Central Mexico) were investigated by i) structural and minero-petrographic studies and, ii) fluid inclusion and isotope analyses carried out on skarn and hydrothermal alteration minerals.Two families of faults have been recognized, NNW-SSE and SW-NE oriented, respectively. The SW-NE trending faults often controlled the emplacement of dykes, indicating that the magmatic fluid was channeled and driven by the faults induced permeability. Their activity is at least encompassed between Miocene and Quaternary. The kinematic relation between these two fault systems could be explained in a extensional framework, assuming that the NNW-SSE fault system acted as transfer faults. Fluid inclusions recorded the circulation of: 1) high-temperature (up to 650°C), high-salinity (up to 60 wt.% NaCl equiv.) fluid of magmatic origin; 2) high-temperature (470-650°C) aqueous-carbonic fluid produced during fluid-rock interaction with carbonate basement rocks and 3) relatively low-salinity (up to 2 wt.% NaCl equiv.) fluid of meteoric origin. A general evolution from high- to low-temperature fluid circulation characterized the geothermal system.</p>


2014 ◽  
Author(s):  
Mohamed S El-Hateel ◽  
Parvez Ahmad ◽  
Ahmed Hesham A Ismail ◽  
Islam A M Henaish ◽  
Ahmed Ashraf

2014 ◽  
Vol 13 (3) ◽  
Author(s):  
Agustinus Denny Unggul Raharjo

<p class="BodyA">South Manokwari Regency is a new autonomous region in West Papua Province with abundant natural resources. As a new autonomous region South Manokwari Regency will be experiencing significant population growth. Population growth along with development and modernization will give burden to electricity demand. Alternatively, electricity can be provided with geothermal resources in Momiwaren District. Based on survey conducted by the government through the Geology Resources Centre in 2009, the reservoir temperature of the geothermal sources is 84<sup>o</sup>C with non volcanic geothermal system. Thus, the geothermal resources in South Manokwari Regency could be developed into binary cycle electric generator.</p>


Sign in / Sign up

Export Citation Format

Share Document