Eigenvalues of Stochastic Blockmodel Graphs and Random Graphs with Low-Rank Edge Probability Matrices

Sankhya A ◽  
2021 ◽  
Author(s):  
Avanti Athreya ◽  
Joshua Cape ◽  
Minh Tang
1997 ◽  
Vol 62 (2) ◽  
pp. 609-623 ◽  
Author(s):  
James F. Lynch

AbstractLet be the infinitary language obtained from the first-order language of graphs by closure under conjunctions and disjunctions of arbitrary sets of formulas, provided only finitely many distinct variables occur among the formulas. Let p(n) be the edge probability of the random graph on n vertices. It is shown that if p(n) ≪ n−1 satisfies certain simple conditions on its growth rate, then for every , the probability that σ holds for the random graph on n vertices converges. In fact, if p(n) = n−α, α > 1, then the probability is either smaller than for some d > 0, or it is asymptotic to cn−d for some c > 0, d ≥ 0. Results on the difficulty of computing the asymptotic probability are given.


10.37236/3285 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Deepak Bal ◽  
Alan Frieze ◽  
Michael Krivelevich ◽  
Po-Shen Loh

For a fixed graph $H$ with $t$ vertices, an $H$-factor of a graph $G$ with $n$ vertices, where $t$ divides $n$, is a collection of vertex disjoint (not necessarily induced) copies of $H$ in $G$ covering all vertices of $G$. We prove that for a fixed tree $T$ on $t$ vertices and $\epsilon>0$, the random graph $G_{n,p}$, with $n$ a multiple of $t$, with high probability contains a family of edge-disjoint $T$-factors covering all but an $\epsilon$-fraction of its edges, as long as $\epsilon^4 n p \gg \log^2 n$. Assuming stronger divisibility conditions, the edge probability can be taken down to $p>\frac{C\log n}{n}$. A similar packing result is proved also for pseudo-random graphs, defined in terms of their degrees and co-degrees.


10.37236/5025 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Asaf Ferber

We show how to adjust a very nice coupling argument due to McDiarmid in order to prove/reprove in a novel way results concerning Hamilton cycles in various models of random graph and hypergraphs. In particular, we firstly show that for $k\geq 3$, if $pn^{k-1}/\log n$ tends to infinity, then a random $k$-uniform hypergraph on $n$ vertices, with edge probability $p$, with high probability (w.h.p.) contains a loose Hamilton cycle, provided that $(k-1)|n$. This generalizes results of Frieze, Dudek and Frieze, and reproves a result of Dudek, Frieze, Loh and Speiss. Secondly, we show that there exists $K>0$ such for every $p\geq (K\log n)/n$ the following holds: Let $G_{n,p}$ be a random graph on $n$ vertices with edge probability $p$, and suppose that its edges are being colored with $n$ colors uniformly at random. Then, w.h.p. the resulting graph contains a Hamilton cycle with for which all the colors appear (a rainbow Hamilton cycle). Bal and Frieze proved the latter statement for graphs on an even number of vertices, where for odd $n$ their $p$ was $\omega((\log n)/n)$. Lastly, we show that for $p=(1+o(1))(\log n)/n$, if we randomly color the edge set of a random directed graph $D_{n,p}$ with $(1+o(1))n$ colors, then w.h.p. one can find a rainbow Hamilton cycle where all the edges are directed in the same way.


1998 ◽  
Vol 63 (2) ◽  
pp. 427-438 ◽  
Author(s):  
John T. Baldwin ◽  
Saharon Shelah

We work throughout in a finite relational language L. This paper is built on [2] and [3]. We repeat some of the basic notions and results from these papers for the convenience of the reader but familiarity with the setup in the first few sections of [3] is needed to read this paper. Spencer and Shelah [6] constructed for each irrational α between 0 and 1 the theory Tα as the almost sure theory of random graphs with edge probability n−α. In [2] we proved that this was the same theory as the theory Tα built by constructing a generic model in [3]. In this paper we explore some of the more subtle model theoretic properties of this theory. We show that Tα has the dimensional order property and does not have the finite cover property.We work in the framework of [3] so probability theory is not needed in this paper. This choice allows us to consider a wider class of theories than just the Tα. The basic facts cited from [3] were due to Hrushovski [4]; a full bibliography is in [3]. For general background in stability theory see [1] or [5].We work at three levels of generality. The first is given by an axiomatic framework in Context 1.10. Section 2 is carried out in this generality. The main family of examples for this context is described in Example 1.3. Sections 3 and 4 depend on a function δ assigning a real number to each finite L-structure as in these examples. Some of the constructions in Section 3 (labeled at the time) use heavily the restriction of the class of examples to graphs. The first author acknowledges useful discussions on this paper with Sergei Starchenko.


2009 ◽  
Vol 19 (1) ◽  
pp. 87-98 ◽  
Author(s):  
ROSS J. KANG ◽  
COLIN McDIARMID

We consider the t-improper chromatic number of the Erdős–Rényi random graph Gn,p. The t-improper chromatic number χt(G) is the smallest number of colours needed in a colouring of the vertices in which each colour class induces a subgraph of maximum degree at most t. If t = 0, then this is the usual notion of proper colouring. When the edge probability p is constant, we provide a detailed description of the asymptotic behaviour of χt(Gn,p) over the range of choices for the growth of t = t(n).


Author(s):  
V. F. Kolchin
Keyword(s):  

2020 ◽  
Vol 63 (3) ◽  
pp. 286-302
Author(s):  
Damian Mowczan ◽  

The main objective of this paper was to estimate and analyse transition-probability matrices for all 16 of Poland’s NUTS-2 level regions (voivodeship level). The analysis is conducted in terms of the transitions among six expenditure classes (per capita and per equivalent unit), focusing on poverty classes. The period of analysis was two years: 2015 and 2016. The basic aim was to identify both those regions in which the probability of staying in poverty was the highest and the general level of mobility among expenditure classes. The study uses a two-year panel sub-sample of unidentified unit data from the Central Statistical Office (CSO), specifically the data concerning household budget surveys. To account for differences in household size and demographic structure, the study used expenditures per capita and expenditures per equivalent unit simultaneously. To estimate the elements of the transition matrices, a classic maximum-likelihood estimator was used. The analysis used Shorrocks’ and Bartholomew’s mobility indices to assess the general mobility level and the Gini index to assess the inequality level. The results show that the one-year probability of staying in the same poverty class varies among regions and is lower for expenditures per equivalent units. The highest probabilities were identified in Podkarpackie (expenditures per capita) and Opolskie (expenditures per equivalent unit), and the lowest probabilities in Kujawsko-Pomorskie (expenditures per capita) and Małopolskie (expenditures per equivalent unit). The highest level of general mobility was noted in Małopolskie, for both categories of expenditures.


2014 ◽  
Vol 59 (2) ◽  
pp. 509-516
Author(s):  
Andrzej Olajossy

Abstract Methane sorption capacity is of significance in the issues of coalbed methane (CBM) and depends on various parameters, including mainly, on rank of coal and the maceral content in coals. However, in some of the World coals basins the influences of those parameters on methane sorption capacity is various and sometimes complicated. Usually the rank of coal is expressed by its vitrinite reflectance Ro. Moreover, in coals for which there is a high correlation between vitrinite reflectance and volatile matter Vdaf the rank of coal may also be represented by Vdaf. The influence of the rank of coal on methane sorption capacity for Polish coals is not well understood, hence the examination in the presented paper was undertaken. For the purpose of analysis there were chosen fourteen samples of hard coal originating from the Upper Silesian Basin and Lower Silesian Basin. The scope of the sorption capacity is: 15-42 cm3/g and the scope of vitrinite reflectance: 0,6-2,2%. Majority of those coals were of low rank, high volatile matter (HV), some were of middle rank, middle volatile matter (MV) and among them there was a small number of high rank, low volatile matter (LV) coals. The analysis was conducted on the basis of available from the literature results of research of petrographic composition and methane sorption isotherms. Some of those samples were in the form (shape) of grains and others - as cut out plates of coal. The high pressure isotherms previously obtained in the cited studies were analyzed here for the purpose of establishing their sorption capacity on the basis of Langmuire equation. As a result of this paper, it turned out that for low rank, HV coals the Langmuire volume VL slightly decreases with the increase of rank, reaching its minimum for the middle rank (MV) coal and then increases with the rise of the rank (LV). From the graphic illustrations presented with respect to this relation follows the similarity to the Indian coals and partially to the Australian coals.


Author(s):  
An Wang ◽  
Donglin Chen ◽  
Shan Cheng ◽  
Xuepeng Jiao ◽  
Wenwei Chen
Keyword(s):  
Flue Gas ◽  

Sign in / Sign up

Export Citation Format

Share Document