scholarly journals Assessing the impact of land use and land cover dynamics on water quality of Dal Lake, NW Himalaya, India

2020 ◽  
Vol 10 (10) ◽  
Author(s):  
Ishtiyaq Ahmad Rather ◽  
Abdul Qayoom Dar

Abstract A dynamic process like land use, if anthropogenically unsustainable, adversely affects the well-being of the land system. Worldwide, water bodies are facing imminent threat due to unsustainable anthropogenic activities. Water quality and ecology are the two characteristics of water bodies, if not preserved, shall have a direct consequence on the well-being of the human systems. Hence it is essential to understand the causes and consequences of the deteriorating water body systems. The condition is particularly grim in Himalayan water body ecosystems, where unplanned and unchecked urbanization has threatened their very existence. In the present study, the dynamics of land use/land cover (LULC) and its impact on the water quality of Dal Lake in Kashmir Himalaya, India has been assessed. We carried out a detailed study wherein changing LULC is analyzed against the deteriorating trophic status of the Dal Lake using time-series of satellite imagery of the lake’s catchment and its water quality data. Results indicated that the water quality of Dal Lake has remarkably deteriorated due to increased nutrient and sediment loads from the catchment, attributed to significant anthropogenic activities in the catchment. Due to unprecedented LULC changes in the catchment, the forest class shows a significantly negative change since the last four decades (1980–2018), corroborating with the ongoing deterioration of physicochemical characteristics of the lake. The analysis shows an increase in all the agents of eutrophication, such as NO3–N, TP, and COD, from 1990 to 2018. The decrease in forest, agriculture, and floating gardens was observed to show a significant negative correlation with the increase in the decadal average values of the COD, NO3–N, and TP for the same corresponding period. Similarly, a positive correlation was found between the increase in built-up, aquatic vegetation, bare surfaces, and these water quality parameters, establishing a strong relationship between the deteriorating condition of the lake and changing LULC. Our findings indicate that changing LULC of the lake’s catchment is one of the critical factors that has significantly contributed toward the deteriorating ecology and water quality of the Dal Lake. This study shall contribute toward the development of the robust conservation strategy in order to save this urban lake from its untimely death.

2021 ◽  
Author(s):  
Nde Samuel Che ◽  
Sammy Bett ◽  
Enyioma Chimaijem Okpara ◽  
Peter Oluwadamilare Olagbaju ◽  
Omolola Esther Fayemi ◽  
...  

The degradation of surface water by anthropogenic activities is a global phenomenon. Surface water in the upper Crocodile River has been deteriorating over the past few decades by increased anthropogenic land use and land cover changes as areas of non-point sources of contamination. This study aimed to assess the spatial variation of physicochemical parameters and potentially toxic elements (PTEs) contamination in the Crocodile River influenced by land use and land cover change. 12 surface water samplings were collected every quarter from April 2017 to July 2018 and were analyzed by inductive coupled plasma spectrometry-mass spectrometry (ICP-MS). Landsat and Spot images for the period of 1999–2009 - 2018 were used for land use and land cover change detection for the upper Crocodile River catchment. Supervised approach with maximum likelihood classifier was used for the classification and generation of LULC maps for the selected periods. The results of the surface water concentrations of PTEs in the river are presented in order of abundance from Mn in October 2017 (0.34 mg/L), followed by Cu in July 2017 (0,21 mg/L), Fe in April 2017 (0,07 mg/L), Al in July 2017 (0.07 mg/L), while Zn in April 2017, October 2017 and April 2018 (0.05 mg/L). The concentrations of PTEs from water analysis reveal that Al, (0.04 mg/L), Mn (0.19 mg/L) and Fe (0.14 mg/L) exceeded the stipulated permissible threshold limit of DWAF (< 0.005 mg/L, 0.18 mg/L and 0.1 mg/L) respectively for aquatic environments. The values for Mn (0.19 mg/L) exceeded the permissible threshold limit of the US-EPA of 0.05 compromising the water quality trait expected to be good. Seasonal analysis of the PTEs concentrations in the river was significant (p > 0.05) between the wet season and the dry season. The spatial distribution of physicochemical parameters and PTEs were strongly correlated (p > 0.05) being influenced by different land use type along the river. Analysis of change detection suggests that; grassland, cropland and water bodies exhibited an increase of 26 612, 17 578 and 1 411 ha respectively, with land cover change of 23.42%, 15.05% and 1.18% respectively spanning from 1999 to 2018. Bare land and built-up declined from 1999 to 2018, with a net change of - 42 938 and − 2 663 ha respectively witnessing a land cover change of −36.81% and − 2.29% respectively from 1999 to 2018. In terms of the area under each land use and land cover change category observed within the chosen period, most significant annual change was observed in cropland (2.2%) between 1999 to 2009. Water bodies also increased by 0.1% between 1999 to 2009 and 2009 to 2018 respectively. Built-up and grassland witness an annual change rate in land use and land cover change category only between 2009 to 2018 of 0.1% and 2.7% respectively. This underscores a massive transformation driven by anthropogenic activities given rise to environmental issues in the Crocodile River catchment.


2018 ◽  
Vol 13 (Special issue 1) ◽  
pp. 11-21
Author(s):  
KALYANI SUPRIYA ◽  
R K AGGARWAL ◽  
S K BHARDWAJ

Landuse alteration is one of the primary causes of global environmental change. Changes in the landuse usually occurred regionally and globally over last few decades and will carry on in the future as well. These activities are highly influenced by anthropogenic activities and have more serious consequences on the quality of water and air. In the present study relationship between land use impact on water and air quality have been reviewed.


2021 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Juliana Nazareth de Lana ◽  
Márcio de Oliveira ◽  
Vanessa Romario de Paula ◽  
Cézar Henrique Barra Rocha

Changes in the land use and land cover in areas adjacent to water reservoirs directly affect the quality of this water. This research presents a study on the water quality in the basin of one of the most important public water supply reservoirs in the city of Juiz de Fora, Minas Gerais. The main objective of this study was to analyze the behavior of limnological parameters and the correlation with land use and land cover in the contribution basin of the Doutor Jo&atilde;o Penido reservoir (CBJPR). The methodology was based on the analysis of water quality parameters, related to water samples collected from 2012 to 2015. Six sampling points were chosen from different locations: spring, medium course, main tributaries of the reservoir and the reservoir catchment. The parameters analyzed were turbidity, total solids (TS), oxygen consumed (OC), dissolved oxygen (DO), electrical conductivity, total nitrogen (TN), total phosphorus (TP), E. Coli, temperature, pH and total dissolved solids (TDS). The Kendall&rsquo;s tau test was used to analyze the correlations between the parameters of water quality, land use and land cover in the CBJPR. In general, measured parameters showed better results in spring and in reservoir catchment, showing a worse quality of the water along the tributaries and the dilution power of the reservoir. The correlations pointed to the need for protection and preservation of forests in strategic locations to ensure good water quality.


Author(s):  

Upgrading of the national standardization system creates favorable conditions for support and normal promotion of integrated environmental standards as a toolbox for control of the process of minimization of adverse impacts with their concurrent accounting and possible redistribution among the environment elements, i.e. air, water bodies, and soils. In the Russian practice of environmental protection there is no any objective toolbox for comprehensive assessment of the current activities’ negative impact. In outlook adoption of the negative impact minimization mechanism is most probable through the many-year benchmarking with European expertise based on the revealing of cause-eff ect relations in terms of «relative improvement of technique against the attained quality of environment (objectives)». Water bodies are subjected both to direct and indirect negative impact. There is no one method for assessment of water bodies’ environmental safety as a basis for adoption of adequate solutions in water sector. The developed standards on the basis of water/economic activities without considerable emissions to air and to soils propose a toolbox to secure uniform quantitative assessment both the techniques negative impact through assessment of their waste water quality and assessment of water quality of the receiving water body. The developed toolbox provides detection of the «negative impact – water body water quality» causeeffect relations. Integrated criteria proposed in the standards provide ranking and classifying of negative impact objects, detection and identification of the national water/economic best available techniques, implementation of the combined approach in the process of adoption of integrated environmental permissions.


2022 ◽  
Author(s):  
Vitaliy V. Chelnokov ◽  
Aleksey V. Matasov ◽  
Elena Zabolotnaya ◽  
Anna S. Makarova ◽  
Andrey N. Glushko

The aim of this research was to develop environmental methods for the restoration and rehabilitation of Moscow’s water bodies. A number of methods are recommended. These can help to improve the environmental condition and water quality of water bodiesin Moscow. Keywords: ehabilitation of water body, engineering biology, environmental preservation


Author(s):  
S. I. Ehiorobo ◽  
A. E. Ogbeibu

The water quality of the Okomu Wetland was evaluated using the Water Quality Index (WQI) technique which provides a number that expresses overall water quality of a water body or water sample at a particular time. Sampling of physicochemical parameters spanned two years covering the wet and dry seasons and the water quality data were obtained from 10 sampling locations; Ponds 36, 52, 54, 61, 64, 90, 94, Arhakhuan Stream, Okomu River (Agekpukpu) and Okomu River (Iron bridge) all within the Okomu National Park. Parameters such as Total Dissolved Solids (TDS), Turbidity, pH, Electrical conductivity (EC), Chlorine (Cl), Nitrate (NO3), Sulphate (SO4), Sodium (Na), Magnesium (Mg), (Iron) Fe, Chromium (Cr), Zinc (Zn), Copper (Cu), Manganese (Mn), Lead (Pb), and Nikel (Ni) were used to compute WQI and the values obtained for the wetland ranged between 34.36 and 167.28. The Index shows that pond 36, 52 and 54 are unfit for drinking with values between 103.86 and 167.28; ponds 61 and 64 are of the very poor quality category with WQI values of 95.19 and 92.44 respectively, Pond 90, pond 94, Arhakhuan Stream and Okomu River (Agekpukpu) are of poor quality and WQI values between and 53.58 and 73.15. Whereas, the Okomu River (Iron bridge) is within the good water quality (34.36) category. The Okomu River by Iron bridge is of good quality rating while other sampled points were of poor, very poor or unfit for drinking though these water bodies are mostly free from anthropogenic activities because of the conservative status of the study area. A major source of pollution within the wetland is surface runoff. The water quality of the wetland may not be suitable for man’s consumption especially pond water which are majorly impacted by runoff, yet very important for the survival and sustenance of the forest animals and plants. The water quality index (WQI) interprets physicochemical characteristics of water by providing a value which expresses the overall water quality and thus, reveals possible pollution problems of a water body. It turns complex water quality data into information that is easily understandable and usable by scientists, researchers and the general public.


2022 ◽  
Vol 14 (1) ◽  
pp. 200
Author(s):  
Lingjun Wang ◽  
Wanjuan Bie ◽  
Haocheng Li ◽  
Tanghong Liao ◽  
Xingxing Ding ◽  
...  

Small water bodies ranging in size from 1 to 50,000 m2, are numerous, widely distributed, and have various functions in water storage, agriculture, and fisheries. Small water bodies used for agriculture and fisheries are economically significant in China, hence it is important to properly identify and analyze them. In remote sensing technology, water body identification based on band analysis, image classification, and water indices are often designed for large, homogenous water bodies. Traditional water indices are often less accurate for small water bodies, which often contain submerged or floating plants or easily confused with hill shade. Water quality inversion commonly depends on establishing the relationship between the concentration of water constituents and the observed spectral reflectance. However, individual variation in water quality in small water bodies is enormous and often far beyond the range of existing water quality inversion models. In this study, we propose a method for small water body identification and water quality estimation and test its applicability in Wuhan. The kappa coefficient of small water body identification is over 0.95, and the coefficient of determination of the water quality inversion model is over 0.9. Our results show that the method proposed in this study can be employed to accurately monitor the dynamics of small water bodies. Due to the outbreak of the COVID-19 pandemic, the intensity of human activities decreased. As a response, significant changes in the water quality of small water bodies were observed. The results also suggest that the water quality of small water bodies under different production modes (intensive/casual) respond differently in spatial and temporal dimensions to the decrease in human activities. These results illustrate that effective remote sensing monitoring of small water bodies can provide valuable information on water quality.


2020 ◽  
Vol 12 (6) ◽  
pp. 979 ◽  
Author(s):  
Magdalena Matysik ◽  
Damian Absalon ◽  
Michał Habel ◽  
Michael Maerker

Reservoirs are formed through the artificial damming of a river valley. Reservoirs, among others, capture polluted load transported by the tributaries in the form of suspended and dissolved sediments and substances. Therefore, reservoirs are treated in the European Union (EU) as “artificial” or “heavily modified” surface water bodies. The reservoirs’ pollutant load depends to a large extent on the degree of anthropogenic impact in the respective river catchment area. The purpose of this paper is to assess the mutual relation between the catchment area and the reservoirs. In particular, we focus on the effects of certain land use/land cover on reservoirs’ water quality. For this study, we selected twenty Polish reservoirs for an in-depth analysis using 2018 CORINE Land Cover data. This analysis allowed the identification of the main triggering factors in terms of water quality of the respective reservoirs. Moreover, our assessment clearly shows that water quality of the analysed dam reservoirs is directly affected by the composition of land use/land cover, both of the entire total reservoir catchment areas and the directly into the reservoir draining sub-catchment areas.


Sign in / Sign up

Export Citation Format

Share Document