scholarly journals Quality assessment of drinking water of Multan city, Pakistan in context with Arsenic and Fluoride and use of Iron nanoparticle doped kitchen waste charcoal as a potential adsorbent for their combined removal

2021 ◽  
Vol 11 (12) ◽  
Author(s):  
Iris Earnest ◽  
Rabia Nazir ◽  
Almas Hamid

AbstractIn majority cities of Pakistan, ground water is the main source of drinking water supply in the taps. Studies from different areas of Pakistan reported the presence of arsenic (As3/5+) and fluoride (F−) in drinking water supplies and can be envisaged as a deep-rooted cause of daily exposure of these in humans. The present study was planned with three way approach, i.e., to assess drinking water quality in Multan city, a highly populated and industrial activity area; synthesis of nano-adsorbent for simultaneous, effective and low-cost removal of fluoride and arsenic and manage waste by utilization of kitchen waste for synthesis of the nano-adsorbent. Out of 30 samples collected, 80% and 73% samples were found exceeding maximum residual limits (MRL) for F− and As3/5+, respectively, while 53% samples had both As3/5+ and F− concentrations greater than MRL. All these water samples were then treated with prepared nano-adsorbent, i.e., iron nanoparticles doped kitchen waste charcoal after evaluating the optimized experimental parameters and application of adsorption, kinetics and thermodynamic models. The nano-adsorbent showed high removal efficacy 81–100% for F− and 13–100% for As3+.

2020 ◽  
Vol 20 (3) ◽  
pp. 871-877
Author(s):  
Ashish Tambi ◽  
Urmila Brighu ◽  
A. B. Gupta

Abstract Determining the microbial quality of drinking water by assessing the presence/absence (P/A) or enumeration of indicator bacteria continues to be widely practiced worldwide. However, rapid tests are required for microbiological water quality assessment so that the information is available in the shortest possible time for initiating a timely intervention. Traditional methods for the enumeration of indicator bacteria are not only expensive but also need trained personnel. We have developed a low-cost kit, MColiPAT, and have validated its application for detection of coliforms in drinking water using the IDEXX Colilert-18 Quanti tray method. MColiPAT kit medium was able to detect coliforms down to a level of 3.1 MPN/100 ml within 10.5 hours. The sensitivity and specificity of the kit were 95.45% and 100% respectively. MColiPAT is found to be reliable and accurate for the detection of coliforms in drinking water.


2002 ◽  
Vol 2 (1) ◽  
pp. 57-62 ◽  
Author(s):  
W.H. Höll ◽  
K. Hagen

CARIX is an ion exchange process which usually applies a mixed bed consisting of a weakly acidic and a strongly basic exchanger material. Carbon dioxide is applied as the only chemical for regeneration of the exchangers. As a consequence, the effluent contains only the amount of salt eliminated during the service cycle. CARIX allows a combined partial softening/dealkalisation/sulfate/nitrate of drinking water. A modification of the process uses exclusively a weakly acidic cation exchanger and allows a softening/dealkalisation. The process has been realised for drinking water treatment in five full-scale plants in Germany. Results of operation demonstrate that an excellent water quality is provided at fairly low cost.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 47 ◽  
Author(s):  
S. Kavi Priya ◽  
G. Shenbagalakshmi ◽  
T. Revathi

Drinking Water Distribution Systems facilitate to carry portable water from water resources such as reservoirs, river, and water tanks to industrial, commercial and residential consumers through complex buried pipe networks. Determining the consequences of a water contamination event is an important concern in the field of water systems security and in drinking water distribution systems. The proposed work is based on the development of low cost fuzzy based water quality monitoring system using wireless sensor networks which is capable of measuring physiochemical parameters of water quality such as pH, temperature, conductivity, oxidation reduction potential and turbidity. Based on selected parameters a sensing unit is developed along with several microsystems for analog signal conditioning, data aggregation, sensor data analysis and logging, and remote representation of data to the consumers. Finally, algorithms for fusing the real time data and decision making using fuzzy logic at local level are developed to assess the water contamination risk. Based on the water contamination level in the distribution pipeline the drinking water quality is classified as acceptable/reject/desirable. When the contamination is detected, the sensing unit with ZigBee sends signals to close the solenoid valve inside the pipeline to prevent the flow of contaminated water supply and it intimates the consumers about drinking water quality through mobile app. Experimental results indicate that this low cost real time water quality monitoring system acts as an ideal early warning system with best detection accuracy. The derived solution can also be applied to different IoT (Internet of Things) scenario such as smart cities, the city transport system etc.


2020 ◽  
Vol 12 (9) ◽  
pp. 3768 ◽  
Author(s):  
Emily Bedell ◽  
Taylor Sharpe ◽  
Timothy Purvis ◽  
Joe Brown ◽  
Evan Thomas

Low-cost, field-deployable, near-time methods for assessing water quality are not available when and where waterborne infection risks are greatest. We describe the development and testing of a novel device for the measurement of tryptophan-like fluorescence (TLF), making use of recent advances in deep-ultraviolet light emitting diodes (UV-LEDs) and sensitive semiconductor photodiodes and photomultipliers. TLF is an emerging indicator of water quality that is associated with members of the coliform group of bacteria and therefore potential fecal contamination. Following the demonstration of close correlation between TLF and E. coli in model waters and proof of principle with sensitivity of 4 CFU/mL for E. coli, we further developed a two-LED flow-through configuration capable of detecting TLF levels corresponding to “high risk” fecal contamination levels (>10 CFU/100 mL). Findings to date suggest that this device represents a scalable solution for remote monitoring of drinking water supplies to identify high-risk drinking water in near-time. Such information can be immediately actionable to reduce risks.


2011 ◽  
Vol 1 (4) ◽  
pp. 233-241 ◽  
Author(s):  
Caetano C. Dorea ◽  
Murray R. Simpson

Turbidity tubes have been considered to be the field method of choice for drinking water quality monitoring in resource-limited contexts because of their relative simplicity and low cost in comparison with conventional (nephelometric) turbidimeters. These tubes utilise the principle of visual extinction of a submerged target for turbidity determination and were therefore thought to be subject to user subjectivity, possibly affecting results. This study evaluated their performance under both field and controlled-laboratory conditions. Results from turbidity tubes can differ substantially from those obtained with conventional turbidimeters; this is of particular importance in the reporting of low turbidity (<10 NTU) measurements. These differences could be due to a combination of factors, such as: user variability, differences in calibration scales, and turbidity tube target shape and background colour. In view of their limitations, the usefulness of turbidity tubes for drinking water quality assessments and recommendations on the reporting of their results are also discussed.


2012 ◽  
Vol 7 (4) ◽  
Author(s):  
B. R. de Graaf ◽  
F. Williamson ◽  
Marcel Klein Koerkamp ◽  
J. W. Verhoef ◽  
R. Wuestman ◽  
...  

For safe supply of drinking water, water quality needs to be monitored online in real time. The consequence of inadequate monitoring can result in substantial health risks, and economic and reputational damages. Therefore, Vitens N.V., the largest drinking water company of the Netherlands, set a goal to explore and invest in the development of intelligent water supply. In order to do this Vitens N.V. has set up a demonstration network for online water quality monitoring, the Vitens Innovation Playground (VIP). With the recent innovative developments in the field of online sensoring Vitens kicked off, in 2011, its first major online sensoring program by implementing a sensor grid based on EventLab systems from Optiqua Technologies Pte Ltd in the distribution network. EventLab utilizes bulk refractive index as a generic parameter for continuous real time monitoring of changes in water quality. Key characteristics of this innovative optical sensor technology, high sensitivity generic sensors at low cost, make it ideal for deployment as an early warning system. This paper describes different components of the system, the technological challenges that were overcome, and presents performance data and conclusions from deployment of Optiqua's EventLab systems in the VIP.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Jagadish Chandra Tarafdar ◽  
Ramesh Raliya

Development of reliable and ecofriendly green approach for synthesis of metallic nanoparticles biologically is an important step in the field of application of nanoscience and nanotechnology. The present paper reports the green approach for iron nanoparticle synthesis using Aspergillus oryzae TFR9 using FeCl3 as a precursor metal salt. Valid characterization techniques employed for biosynthesized iron nanoparticles including dynamic light scattering (DLS), transmission electron microscopy (TEM), and high resolution-transmission electron microscopy (HR-TEM) for morphological study. X-ray energy dispersive spectroscopy (EDS) spectrum confirmed the presence of elemental iron signal in high percentage. Apart from ecofriendliness and easy availability, low-cost biomass production will be more advantageous when compared to other chemical methods. Biosynthesis of iron nanoparticles using fungus has greater commercial viability that it may be used in agriculture, biomedicals and engineering sector.


2016 ◽  
Vol 16 (5) ◽  
pp. 1320-1326 ◽  
Author(s):  
Ashish Tambi ◽  
Urmila Brighu ◽  
A. B. Gupta

Coliforms are the most widely accepted bacterial indicator of fecal pollution in water. Several commercially available portable kits make it possible to carry out on-site water quality testing, but are usually costly and often require technical expertise to operate. In developing countries like India, presence/absence test kits like the H2S test kits are commonly used for routine microbiological water quality examination. H2S test kits require an incubation time of more than 24 hours and often gives false positive results. In this research work, we have developed a low-cost and sensitive test kit (ColiPAT) for the detection of coliforms including Escherichia coli in drinking water. The kit can detect very low contamination levels down to 2 coliforms/100 mL within 18 hours at 35 °C. The ColiPAT kit does not lose its sensitivity in the typical indoor temperature range of 27 °C to 35 °C. ColiPAT is also affordable and easy to perform so that local populace can conduct the test independently. This paper presents the results of sensitivity and specificity analysis of a ColiPAT kit and its comparison with the H2S test kits as standardized using Colilert method.


Sign in / Sign up

Export Citation Format

Share Document