scholarly journals Sedimentary facies, depositional environments and conceptual outcrop analogue (Dam Formation, early Miocene) Eastern Arabian Platform, Saudi Arabia: a new high-resolution approach

2021 ◽  
Vol 11 (6) ◽  
pp. 2497-2518
Author(s):  
Syed Haroon Ali ◽  
Osman M. Abdullatif ◽  
Lamidi O. Babalola ◽  
Fawwaz M. Alkhaldi ◽  
Yasir Bashir ◽  
...  

AbstractThis paper presents the facies and depositional environment of the early Miocene Dam Formation, Eastern Arabian platform, Saudi Arabia. Deposition of Dam Formation (Fm.) was considered as a restricted shallow marine deposition. Few studies suggest the role of sea-level change in its deposition but were without decisive substantiation. Here, we describe the facies and high-resolution model of Dam Fm. under varying depositional conditions. The depositional conditions were subjected to changing relative sea level and tectonics. High-resolution outcrop photographs, sedimentological logs, and thin sections present that the mixed carbonate–siliciclastic sequence was affected by a regional tectonics. The lower part of Dam Fm. presents the development of carbonate ramp conditions that are represented by limestones and marl. The depositional conditions fluctuated with the fall of sea level, and uplift in the region pushed the siliciclastic down-dip and covered the whole platform. The subsequent rise in sea level was not as pronounced and thus allowed the deposition of microbial laminites and stromatolitic facies. The southeast outcrops, down-dip, are more carbonate prone as compared to the northwest outcrop, which allowed the deposition of siliciclastic-prone sedimentation up-dip. All facies, architecture, heterogeneity, and deposition were controlled by tectonic events including uplift, subsidence, tilting, and syn-sedimentary faulting, consequently affecting relative sea level. The resulting conceptual outcrop model would help to improve our understanding of mixed carbonate–siliciclastic systems and serve as an analogue for other stratigraphic units in the Arabian plate and region. Our results show that Dam Fm. can be a good target for exploration in the Northern Arabian Gulf.

2021 ◽  
Author(s):  
Geraint Hughes ◽  
Osman Varol

<p>Marine sediments deposited in response to the Neogene opening of the Red Sea during divergence of the African-Arabian plate margin provide micropalaeontological chronological evidence to calibrate synchronous palaeoenvironmental events from the Gulf of Suez to the Gulf of Aden. This facility provides insights to the timing and relative rates of tectonic subsidence associated with the rifting episodes of the region. Biostratigraphic index forms include planktonic and benthonic foraminifera and calcareous nannofossils. These, combined with various associated microfossils and macrofossil fragments, permit interpretation of a range of depositional environments that span intertidal to bathyal regimes. Onset and recovery from various hypersaline events are similarly interpreted by integrating microfossils and lithology. Following an episode of emergence and sporadic volcanicity, subsidence and the first Neogene marine transgression created brackish to shallow marine lagoons during the Early Miocene (Foraminiferal Letter Stage Upper Te). Rapid subsidence and accumulation of deep marine mudstones, of local hydrocarbon source-rock quality, with thinly interbedded siliciclastic and calciclastic debris flows commenced in the Early Miocene (Planktonic foraminiferal zones N5-N8; Nannofossil zones NN3-NN5). The debris flows increased in abundance and provide good hydrocarbon reservoirs. The Gulf of Suez and Red Sea experienced episodic isolation from the Indian Ocean during the latest Early Miocene and earliest Middle Miocene (Planktonic foraminiferal zones N8-N9; Nannofossil zone NN5 Foraminiferal Letter Stage Middle-Upper Tf1), resulting in hypersaline events with precipitation of submarine gypsum and halite. The isolation is attributed to constriction of the southern Red Sea, in the vicinity of the Bab El Mandab Straits, by eustatic sea level fall as well as probable tectonic activity; the synchronous Gulf of Aden succession does not display evidence for such hypersaline events. A prolonged hypersaline phase extended over most of the Middle Miocene, for which absence of biostratigraphic data precludes age control. During the latest Middle Miocene to Late Miocene, rejuvenation of the hinterland cause rapid deposition of terrestrial and fluviatile coarse and fine siliciclastics, with similar biostratigraphic paucity except for rare diatoms and palynomorphs. Renewed subsidence, associated with opening of the Aqaba Fault, combined with eustatic sea level rise caused marine deposition to recommence in the Pliocene.</p>


2014 ◽  
Vol 151 (5) ◽  
pp. 938-955 ◽  
Author(s):  
NICOLAS OLIVIER ◽  
ARNAUD BRAYARD ◽  
EMMANUEL FARA ◽  
KEVIN G. BYLUND ◽  
JAMES F. JENKS ◽  
...  

AbstractIn Timpoweap Canyon near Hurricane (Utah, USA), spectacular outcrop conditions of Early Triassic rocks document the geometric relationships between a massive Smithian fenestral-microbial unit and underlying, lateral and overlying sedimentary units. This allows us to reconstruct the evolution of depositional environments and high-frequency relative sea-level fluctuations in the studied area. Depositional environments evolved from a coastal plain with continental deposits to peritidal settings with fenestral-microbial limestones, which are overlain by intertidal to shallow subtidal marine bioclastic limestones. This transgressive trend of a large-scale depositional sequence marks a long-term sea-level rise that is identified worldwide after the Permian–Triassic boundary. The fenestral-microbial sediments were deposited at the transition between continental settings (with terrigenous deposits) and shallow subtidal marine environments (with bioturbated and bioclastic limestones). Such a lateral zonation questions the interpretation of microbial deposits as anachronistic and disaster facies in the western USA basin. The depositional setting may have triggered the distribution of microbial deposits and contemporaneous marine biota. The fenestral-microbial unit is truncated by an erosional surface reflecting a drop in relative sea level at the scale of a medium depositional sequence. The local inherited topography allowed the recording of small-scale sequences characterized by clinoforms and short-distance lateral facies changes. Stratal stacking pattern and surface geometries allow the reconstruction of relative sea-level fluctuations and tracking of shoreline migrations. The stacking pattern of these small-scale sequences and the amplitude of corresponding high-frequency sea-level fluctuations are consistent with climatic control. Large- and medium-scale sequences suggest a regional tectonic control.


2015 ◽  
Vol 83 (1) ◽  
pp. 52-65 ◽  
Author(s):  
Natália B. dos Santos ◽  
Ernesto L.C. Lavina ◽  
Paulo S.G. Paim

AbstractThe northern portion of the coastal plain of the Rio Grande do Sul State (southernmost Brazil) comprises an outer sandy barrier that protects a complex lagoon system formed during the Holocene. The terraces of three different lagoons (Gentil, Malvas and Pinguela) formed along their margins record the depositional processes and the relative base level changes over the past 5000 yr. Therefore, our main objective was to characterize and quantify base level fluctuations from the study of these terraces, to correlate them to sea-level changes and to describe the depositional architecture related to the distinct sea-level stages (high-resolution sequence stratigraphy). Satellite images, topographic and GPR profiles, auger holes and radiometric dating were used. The main results indicate a close relationship between relative base level and relative sea-level changes, a stillstand period just after the last transgressive maximum (4840–4650 cal yr BP) and a subsequent overall relative sea-level fall of about 3 m. Both a normal (highstand systems tract) and a forced regression (falling-stage systems tract) controlled the geological record preserved in the terraces. The highstand (older terrace) is characterized by agradational bedding, whereas the falling stage comprises three progradational sets (terraces) bounded by erosive surfaces related to smaller-scale sea-level drops.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2651 ◽  
Author(s):  
Gaia Mattei ◽  
Pietro Aucelli ◽  
Claudia Caporizzo ◽  
Angela Rizzo ◽  
Gerardo Pappone

This research aims to present new data regarding the relative sea-level variations and related morpho-evolutive trends of Naples coast since the mid-Holocene, by interpreting several geomorphological and historical elements. The geomorphological analysis, which was applied to the emerged and submerged sector between Chiaia plain and Pizzofalcone promontory, took into account a dataset that is mainly composed of: measurements from direct surveys; bibliographic data from geological studies; historical sources; ancient pictures and maps; high-resolution digital terrain model (DTM) from Lidar; and, geo-acoustic and optical data from marine surveys off Castel dell’ Ovo carried out by using an USV (Unmanned Surface Vehicle). The GIS analysis of those data combined with iconographic researches allowed for reconstructing the high-resolution geomorphological map and three new palaeoenvironmental scenarios of the study area during the Holocene, deriving from the evaluation of the relative sea-level changes and vertical ground movements of volcano-tectonic origin affecting the coastal sector in the same period. In particular, three different relative sea-level stands were identified, dated around 6.5, 4.5, and 2.0 ky BP, respectively at +7, −5, and −3 m MSL, due to the precise mapping of several paleo-shore platforms that were ordered based on the altimetry and dated thanks to archaeological and geological interpretations.


GeoArabia ◽  
2005 ◽  
Vol 10 (1) ◽  
pp. 49-92 ◽  
Author(s):  
A. Miller Merrell ◽  
Melvin John

ABSTRACT Detailed analysis of over 1,000 subsurface Silurian palynology samples from 34 wells has allowed the development of a robust biostratigraphy based on acritarchs, chitinozoans and cryptospores for the Qusaiba Member of the Qalibah Formation, central Saudi Arabia. The new index fossils described herein augment the Arabian Plate Silurian chitinozoan zonation. The high-resolution biostratigraphic zonation consists of nine First Downhole Occurrences (FDOs) from the lower Telychian through Aeronian. In particular, three regionally recognizable palynologic horizons were identified within the lower part of the informally designated Mid-Qusaiba Sandstone (Angochitina hemeri Interval Zone), and above the FDO of Sphaerochitina solutidina. This high level of biostratigraphic resolution provides a framework for the integration of the sedimentology and calibration with global sea level curves, leading to a detailed understanding of the sequence stratigraphic evolution of this part of the Silurian in Saudi Arabia. Sedimentological core studies identify three Depositional Facies Associations (DFAs) within the Mid-Qusaiba Sandstone interval, including: (1) shelfal deposits (DFA-I) characterized by interbedded hummocky cross-stratified sandstones, graded siltstones and bioturbated mudstones; (2) turbiditic deposits (DFA-II); and (3) an association of heavily contorted and re-sedimented sandstones, siltstones and mudstones (DFA-III) that is considered representative of oversteepened slopes upon the Qusaiba shelf. Integration of the newly recognized palynostratigraphic horizons and the sedimentological data facilitates an understanding of the sequence stratigraphic evolution of the Mid-Qusaiba Sandstone interval and its immediate precursors. Thus a Maximum Flooding Surface (MFS) is identified from significant palynostratigraphic, as well as sedimentological evidence, and concurs with the MFS identified regionally with the Monograptus convolutus Graptolite Zone. Several mud-prone cyclothems downlap onto the MFS. Each of these is identified by its own palynostratigraphic marker: these mud-prone cyclothems represent the distal parts of a Highstand Systems Tract (HST). The end of the HST is marked by evidence of a major, episodic drop in relative sea level. Thus, a relationship is identified wherein successive palynostratigraphic marker horizons, newly identified in this study, are partially eroded by the introduction of sandy turbidites (DFA-II). These turbidites arise from storm-induced erosion of gully complexes in the upper submarine slopes that are present as topography upon the Qusaiba shelf. Each of the successive drops in sea level is separated from the next by a minor, subsequent sea level rise, which precludes further submarine erosion and turbidite deposition, and is instead evident in the widespread occurrence of shallow marine (shelfal) muds and sandy tempestites (DFA-I). The lowstand per se is considered to be represented by the most widespread distribution of the DFA-II turbidite deposits, and is associated with the youngest Mid-Qusaiba Sandstone marker horizon identified in this study, namely Rugosphaera agglomerata n.sp. The youngest unit of DFA-II lowstand turbidites is limited in its occurrence to the more proximal parts of the study area, and thus is considered to represent the onset of the succeeding Transgressive Systems Tract (TST). Of the biostratigraphic indices used for correlation within the Qusaiba Member, Rugosphaera agglomerata and Eupoikilofusa curvata are formally described and two additional important species, Fractoricoronula n.sp. and ?Oppilatala n.sp., are retained in open nomenclature.


2021 ◽  
Author(s):  
◽  
Lisa McCarthy

<p>The Branch Sandstone is located within an overall transgressive, marine sedimentary succession in Marlborough, on the East Coast of New Zealand’s South Island. It has previously been interpreted as an anomalous sedimentary unit that was inferred to indicate abrupt and dramatic shallowing. The development of a presumed short-lived regressive deposit was thought to reflect a change in relative sea level, which had significant implications for the geological history of the Marlborough region, and regionally for the East Coast Basin.  The distribution and lithology of Branch Sandstone is described in detail from outcrop studies at Branch Stream, and through the compilation of existing regional data. Two approximately correlative sections from the East Coast of the North Island (Tangaruhe Stream and Angora Stream) are also examined to provide regional context. Depositional environments were interpreted using sedimentology and palynology, and age control was developed from dinoflagellate biostratigraphy. Data derived from these methods were combined with the work of previous authors to establish depositional models for each section which were then interpreted in the context of relative sea level fluctuations.  At Branch Stream, Branch Sandstone is interpreted as a shelfal marine sandstone, that disconformably overlies Herring Formation. The Branch Sandstone is interpreted as a more distal deposit than uppermost Herring Formation, whilst the disconformity is suggested to have developed during a fall in relative sea level. At Branch Stream, higher frequency tectonic or eustatic sea-level changes can therefore be distinguished within a passive margin sedimentary sequence, where sedimentation broadly reflects subsidence following rifting of the Tasman Sea. Development of a long-lived disconformity at Tangaruhe Stream and deposition of sediment gravity flow deposits at Angora Stream occurred at similar times to the fall in relative sea level documented at the top of the Herring Formation at Branch Stream. These features may reflect a basin-wide relative sea-level event, that coincides with global records of eustatic sea level fall.</p>


Sign in / Sign up

Export Citation Format

Share Document