scholarly journals Mechanistic study of nanoparticles-assisted xanthan gum polymer flooding for enhanced oil recovery: a comparative study

Author(s):  
Afeez Gbadamosi ◽  
Adeyinka Yusuff ◽  
Augustine Agi ◽  
Prem Muruga ◽  
Radzuan Junin ◽  
...  

AbstractRecently, nanoparticle additives have been used to improve stability and hence efficiency of chemicals during enhanced oil recovery. Herein, a comparative analysis of the application of nanoparticle-stabilized xanthan gum for oil recovery applications was investigated. The nanoparticles used as additives are silicon oxide (SiO2), metallic aluminium oxide (Al2O3), and titanium oxide (TiO2). Rheological measurements were carried out to examine the shear viscosity of the polymeric nanofluids under a range of salinity typical of reservoir conditions. Interfacial tension (IFT) experiment was conducted using Kruss tensiometer. Oil displacement studies were carried out to examine the incremental recovery factor of the polymeric nanofluids. The polymeric nanofluids exhibited better rheological behaviour compared to bare xanthan gum (XG) polymer. At 0.5 wt.% nanoparticle concentration, 0.5 wt.% polymer concentration, shearing rate of 10 s−1, and 3 wt.% NaCl concentration, rheology result shows that the shear viscosity of SiO2-XG, Al2O3-XG, and TiO2-XG is 423 mPa.s, 299 mPa.s, and 293 mPa.s, respectively. Moreover, the polymeric nanofluids lowered the IFT of the oil/brine interface due to adsorption at the nanoparticles at the interface. Finally, oil displacement result confirms that the incremental oil recovery after water flooding by Al2O3-XG, TiO2-XG, and SiO2-XG is 28.4%, 27.6%, and 25.2%, respectively.

2020 ◽  
Vol 4 (2) ◽  
pp. 26
Author(s):  
Nam Nguyen Hai Le ◽  
Yuichi Sugai ◽  
Kyuro Sasaki

CO2 microbubbles have recently been used in enhanced oil recovery for blocking the high permeability zone in heterogeneous reservoirs. Microbubbles are colloidal gas aphrons stabilized by thick shells of polymer and surfactant. The stability of CO2 microbubbles plays an important role in improving the performance of enhanced oil recovery. In this study, a new class of design of experiment (DOE)—definitive screening design (DSD) was employed to investigate the effect of five quantitative parameters: xanthan gum polymer concentration, sodium dodecyl sulfate surfactant concentration, salinity, stirring time, and stirring rate. This is a three-level design that required only 11 experimental runs. The results suggest that DSD successfully evaluated how various parameters contribute to CO2 microbubble stability. The definitive screening design revealed a polynomial regression model has ability to estimate the main effect factor, two-factor interactions and pure-quadratic effect of factors with high determination coefficients for its smaller number of experiments compared to traditional design of experiment approach. The experimental results showed that the stability depend primarily on xanthan gum polymer concentration. It was also found that the stability of CO2 microbubbles increases at a higher sodium dodecyl sulfate surfactant concentration and stirring rate, but decreases with increasing salinity. In addition, several interactions are presented to be significant including the polymer–salinity interaction, surfactant–salinity interaction and stirring rate–salinity interaction.


2015 ◽  
Vol 1113 ◽  
pp. 492-497 ◽  
Author(s):  
Effah Yahya ◽  
Nur Hashimah Alias ◽  
Tengku Amran Tengku Mohd ◽  
Nurul Aimi Ghazali ◽  
Tajnor Suriya binti Taju Ariffin

In this study, local isolated Xanthomonas campestries has been used from local cabbage for xanthan gum production via fermentation in shake flask. The product was then recovered with isopropanol and dried. Meanwhile, for extraction and purification of mushroom polysaccharide, we use dead edible mushroom has been used. Polysaccharide mushroom was extracted with NaOH solutions at 100 ͦ C for 24 hrs. Next, polysaccharide was precipitated separately by the addition of ethanol and the resulting polysaccharide extract were dissolved in distilled water. In the present study, different type of biopolymers was used in order to determine the oil recovery with different concentrations. Biopolymers used in this experiment are xanthan gum and mushroom polysaccharide. The properties of both biopolymers were tested for 3000 ppm and 10000 ppm of concentration. The results shown higher oil recovery factor obtained from the mushroom polysaccharide, which is 84.14%. Meanwhile, the highest recovery obtained by xanthan is about 67.44% only. As a conclusion, increasing polymer concentration will increase the oil recovery factor.


RSC Advances ◽  
2017 ◽  
Vol 7 (14) ◽  
pp. 8118-8130 ◽  
Author(s):  
Hongbin Yang ◽  
Wanli Kang ◽  
Hairong Wu ◽  
Yang Yu ◽  
Zhou Zhu ◽  
...  

The dispersed low-elastic microsphere system shows shear-thickening behavior because of the microstructure change and the interaction of internal forces.


The Analyst ◽  
2021 ◽  
Author(s):  
Khashayar R. Bajgiran ◽  
Hannah C. Hymel ◽  
Shayan Sombolestani ◽  
Nathalie Dante ◽  
Nora Safa ◽  
...  

The developed platform offers a simple fluorescent visualization technique to specifically identify the oil and water phases without altering their surface properties which improves on the achievable resolution in EOR applications.


2016 ◽  
Vol 4 (2) ◽  
pp. 69 ◽  
Author(s):  
Cristiano José de Andrade ◽  
Gláucia Maria Pastore

Worldwide oil production has been declining. Microbial enhanced oil recovery is one of the most important tertiary recovery processes. The aim of this work was to evaluate the surface activity properties of surfactin and mannosylerithritol lipids-B. In our previous studies, surfactin and mannosylerithritol lipids were produced using cassava wastewater as substrate and then purified by ultrafiltration. Thus, this work extends our previous studies. Experiments of surface activity under extreme conditions (temperature, ionic strength and pH), oil displacement, removal of oil from sand and emulsification index were carried out. Central composite rotational design was performed under extreme conditions of temperature, pH and ionic strength. The results indicated that ionic strength significantly affected the surface activity of surfactin. On the other hand, ionic strength, but also temperature and pH significantly affected the tenso activity of mannosylerithritol lipids-B. Regarding oil displacement test, mannosylerithritol lipids-B showed higher clear zone than surfactin. Contrary, in the experiments of removal of crude oil from sand, minimal differences were observed between surfactin and mannosylerithritol lipids-B. Therefore, both surfactin and mannosylerithritol lipids-B showed good surface activity under extreme conditions. In addition, it seems that mannosylerithritol lipids-B is subtly better than surfactin for microbial enhanced oil recovery.


Author(s):  
Ahmed Ragab ◽  
Eman M. Mansour

The enhanced oil recovery phase of oil reservoirs production usually comes after the water/gas injection (secondary recovery) phase. The main objective of EOR application is to mobilize the remaining oil through enhancing the oil displacement and volumetric sweep efficiency. The oil displacement efficiency enhances by reducing the oil viscosity and/or by reducing the interfacial tension, while the volumetric sweep efficiency improves by developing a favorable mobility ratio between the displacing fluid and the remaining oil. It is important to identify remaining oil and the production mechanisms that are necessary to improve oil recovery prior to implementing an EOR phase. Chemical enhanced oil recovery is one of the major EOR methods that reduces the residual oil saturation by lowering water-oil interfacial tension (surfactant/alkaline) and increases the volumetric sweep efficiency by reducing the water-oil mobility ratio (polymer). In this chapter, the basic mechanisms of different chemical methods have been discussed including the interactions of different chemicals with the reservoir rocks and fluids. In addition, an up-to-date status of chemical flooding at the laboratory scale, pilot projects and field applications have been reported.


Sign in / Sign up

Export Citation Format

Share Document