Effect of enrofloxacin on gene expression profiles of Escherichia coli

2010 ◽  
Vol 60 (4) ◽  
pp. 653-660 ◽  
Author(s):  
Hua Bai ◽  
Wen-zheng Su ◽  
Xiao-ling Zhu ◽  
Ming Hu ◽  
Yu-qing Liu
mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Piotr Bielecki ◽  
Uthayakumar Muthukumarasamy ◽  
Denitsa Eckweiler ◽  
Agata Bielecka ◽  
Sarah Pohl ◽  
...  

ABSTRACTmRNA profiling of pathogens during the course of human infections gives detailed information on the expression levels of relevant genes that drive pathogenicity and adaptation and at the same time allows for the delineation of phylogenetic relatedness of pathogens that cause specific diseases. In this study, we used mRNA sequencing to acquire information on the expression ofEscherichia colipathogenicity genes during urinary tract infections (UTI) in humans and to assign the UTI-associatedE. coliisolates to different phylogenetic groups. Whereas thein vivogene expression profiles of the majority of genes were conserved among 21E. colistrains in the urine of elderly patients suffering from an acute UTI, the specific gene expression profiles of the flexible genomes was diverse and reflected phylogenetic relationships. Furthermore, genes transcribedin vivorelative to laboratory media included well-described virulence factors, small regulatory RNAs, as well as genes not previously linked to bacterial virulence. Knowledge on relevant transcriptional responses that drive pathogenicity and adaptation of isolates to the human host might lead to the introduction of a virulence typing strategy into clinical microbiology, potentially facilitating management and prevention of the disease.IMPORTANCEUrinary tract infections (UTI) are very common; at least half of all women experience UTI, most of which are caused by pathogenicEscherichia colistrains. In this study, we applied massive parallel cDNA sequencing (RNA-seq) to provide unbiased, deep, and accurate insight into the nature and the dimension of the uropathogenicE. coligene expression profile during an acute UTI within the human host. This work was undertaken to identify key players in physiological adaptation processes and, hence, potential targets for new infection prevention and therapy interventions specifically aimed at sabotaging bacterial adaptation to the human host.


2005 ◽  
Vol 187 (9) ◽  
pp. 3259-3266 ◽  
Author(s):  
Anyou Wang ◽  
David E. Crowley

ABSTRACT Genome-wide analysis of temporal gene expression profiles in Escherichia coli following exposure to cadmium revealed a shift to anaerobic metabolism and induction of several stress response systems. Disruption in the transcription of genes encoding ribosomal proteins and zinc-binding proteins may partially explain the molecular mechanisms of cadmium toxicity.


2007 ◽  
Vol 190 (3) ◽  
pp. 1084-1096 ◽  
Author(s):  
Tim Durfee ◽  
Anne-Marie Hansen ◽  
Huijun Zhi ◽  
Frederick R. Blattner ◽  
Ding Jun Jin

ABSTRACT The bacterial stringent response serves as a paradigm for understanding global regulatory processes. It can be triggered by nutrient downshifts or starvation and is characterized by a rapid RelA-dependent increase in the alarmone (p)ppGpp. One hallmark of the response is the switch from maximum-growth-promoting to biosynthesis-related gene expression. However, the global transcription patterns accompanying the stringent response in Escherichia coli have not been analyzed comprehensively. Here, we present a time series of gene expression profiles for two serine hydroxymate-treated cultures: (i) MG1655, a wild-type E. coli K-12 strain, and (ii) an isogenic relAΔ251 derivative defective in the stringent response. The stringent response in MG1655 develops in a hierarchical manner, ultimately involving almost 500 differentially expressed genes, while the relAΔ251 mutant response is both delayed and limited in scope. We show that in addition to the down-regulation of stable RNA-encoding genes, flagellar and chemotaxis gene expression is also under stringent control. Reduced transcription of these systems, as well as metabolic and transporter-encoding genes, constitutes much of the down-regulated expression pattern. Conversely, a significantly larger number of genes are up-regulated. Under the conditions used, induction of amino acid biosynthetic genes is limited to the leader sequences of attenuator-regulated operons. Instead, up-regulated genes with known functions, including both regulators (e.g., rpoE, rpoH, and rpoS) and effectors, are largely involved in stress responses. However, one-half of the up-regulated genes have unknown functions. How these results are correlated with the various effects of (p)ppGpp (in particular, RNA polymerase redistribution) is discussed.


Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 41-64 ◽  
Author(s):  
Justin Courcelle ◽  
Arkady Khodursky ◽  
Brian Peter ◽  
Patrick O Brown ◽  
Philip C Hanawalt

Abstract The SOS response in UV-irradiated Escherichia coli includes the upregulation of several dozen genes that are negatively regulated by the LexA repressor. Using DNA microarrays containing amplified DNA fragments from 95.5% of all open reading frames identified on the E. coli chromosome, we have examined the changes in gene expression following UV exposure in both wild-type cells and lexA1 mutants, which are unable to induce genes under LexA control. We report here the time courses of expression of the genes surrounding the 26 documented lexA-regulated regions on the E. coli chromosome. We observed 17 additional sites that responded in a lexA-dependent manner and a large number of genes that were upregulated in a lexA-independent manner although upregulation in this manner was generally not more than twofold. In addition, several transcripts were either downregulated or degraded following UV irradiation. These newly identified UV-responsive genes are discussed with respect to their possible roles in cellular recovery following exposure to UV irradiation.


2006 ◽  
Vol 75 (1) ◽  
pp. 278-289 ◽  
Author(s):  
Brian J. Haugen ◽  
Shahaireen Pellett ◽  
Peter Redford ◽  
Holly L. Hamilton ◽  
Paula L. Roesch ◽  
...  

ABSTRACT Deletional inactivation of the gene encoding d-serine deaminase, dsdA, in uropathogenic Escherichia coli strain CFT073 results in a hypermotile strain with a hypercolonization phenotype in the bladder and kidneys of mice in a model of urinary tract infection (UTI). The in vivo gene expression profiles of CFT073 and CFT073 dsdA were compared by isolating RNA directly from the urine of mice challenged with each strain individually. Hybridization of cDNAs derived from these samples to CFT073-specific microarrays allowed identification of genes that were up- or down-regulated in the dsdA deletion strain during UTI. Up-regulated genes included the known d-serine-responsive gene dsdX, suggesting in vivo intracellular accumulation of d-serine by CFT073 dsdA. Genes encoding F1C fimbriae, both copies of P fimbriae, hemolysin, OmpF, a dipeptide transporter DppA, a heat shock chaperone IbpB, and clusters of open reading frames with unknown functions were also up-regulated. To determine the role of these genes as well as motility in the hypercolonization phenotype, mutants were constructed in the CFT073 dsdA background and tested in competition against the wild type in the murine model of UTI. Strains with deletions of one or both of the two P fimbrial operons, hlyA, fliC, ibpB, c0468, locus c3566 to c3568, or c2485 to c2490 colonized mouse bladders and kidneys at levels indistinguishable from wild type. CFT073 dsdA c2398 and CFT073 dsdA focA maintained a hypercolonization phenotype. A CFT073 dsdA dppA mutant was attenuated 10- to 50-fold in its colonization ability compared to CFT073. Our results support a role for d-serine catabolism and signaling in global virulence gene regulation of uropathogenic E. coli.


Sign in / Sign up

Export Citation Format

Share Document