scholarly journals Tissue Ingrowth Markedly Reduces Mechanical Anisotropy and Stiffness in Fibre Direction of Highly Aligned Electrospun Polyurethane Scaffolds

2020 ◽  
Vol 11 (4) ◽  
pp. 456-468 ◽  
Author(s):  
Hugo Krynauw ◽  
Jannik Buescher ◽  
Josepha Koehne ◽  
Loes Verrijt ◽  
Georges Limbert ◽  
...  
2019 ◽  
Author(s):  
Hugo Krynauw ◽  
Jannik Buescher ◽  
Josepha Koehne ◽  
Loes Verrijt ◽  
Georges Limbert ◽  
...  

AbstractPurposeThe lack of long-term patency of synthetic vascular grafts currently available on the market has directed research towards improving the performance of small diameter grafts. Improved radial compliance matching and tissue ingrowth into the graft scaffold are amongst the main goals for an ideal vascular graft.MethodsBiostable polyurethane scaffolds were manufactured by electrospinning and implanted in subcutaneous and circulatory positions in the rat for 7, 14 and 28 days. Scaffold morphology, tissue ingrowth, and mechanical properties of the scaffolds were assessed before implantation and after retrieval.ResultsTissue ingrowth after 24 days was 96.5 ± 2.3% in the subcutaneous implants and 77.8 ± 5.4% in the circulatory implants. Over the 24 days implantation, the elastic modulus at 12% strain decreased by 59% in direction of the fibre alignment whereas it increased by 1379% transverse to the fibre alignment of the highly aligned scaffold of the subcutaneous implants. The lesser aligned scaffold of the circulatory graft implants exhibited an increase of the elastic modulus at 12% strain by 77% in circumferential direction.ConclusionBased on the observations, it is proposed that the mechanism underlying the softening of the highly aligned scaffold in the predominant fibre direction is associated with scaffold compaction and local displacement of fibres by the newly formed tissue. The stiffening of the scaffold, observed transverse to highly aligned fibres and for more a random fibre distribution, represents the actual mechanical contribution of the tissue that developed in the scaffold.


2019 ◽  
Author(s):  
Hugo Krynauw ◽  
Rodaina Omar ◽  
Josepha Koehne ◽  
Georges Limbert ◽  
Neil H Davies ◽  
...  

AbstractConsistent mechanical performance from implantation through healing and scaffold degradation is highly desired for tissue-regenerative scaffolds, e.g. when used for vascular grafts. The aim of this study was the paired in vivo mechanical assessment of biostable and fast degrading electrospun polyester-urethane scaffolds to isolate the effects of material degradation and tissue formation after implantation. Biostable and degradable polyester-urethane scaffolds with substantial fibre alignment were manufactured by electrospinning. Scaffold samples were implanted paired in subcutaneous position in rats for 7, 14 and 28 days. Morphology, mechanical properties and tissue ingrowth of the scaffolds were assessed before implantation and after retrieval. Tissue ingrowth after 28 days was 83 ± 10% in the biostable scaffold and 77 ± 4% in the degradable scaffold. For the biostable scaffold, the elastic modulus at 12% strain increased significantly between 7 and 14 days and decreased significantly thereafter in fibre but not in cross-fibre direction. The degradable scaffold exhibited a significant increase in the elastic modulus at 12% strain from 7 to 14 days after which it did not decrease but remained at the same magnitude, both in fibre and in cross-fibre direction. Considering that the degradable scaffold loses its material strength predominantly during the first 14 days of hydrolytic degradation (as observed in our previous in vitro study), the consistency of the elastic modulus of the degradable scaffold after 14 days is an indication that the regenerated tissue construct retains it mechanical properties.


Author(s):  
Linda C. Sawyer

Recent liquid crystalline polymer (LCP) research has sought to define structure-property relationships of these complex new materials. The two major types of LCPs, thermotropic and lyotropic LCPs, both exhibit effects of process history on the microstructure frozen into the solid state. The high mechanical anisotropy of the molecules favors formation of complex structures. Microscopy has been used to develop an understanding of these microstructures and to describe them in a fundamental structural model. Preparation methods used include microtomy, etching, fracture and sonication for study by optical and electron microscopy techniques, which have been described for polymers. The model accounts for the macrostructures and microstructures observed in highly oriented fibers and films.Rod-like liquid crystalline polymers produce oriented materials because they have extended chain structures in the solid state. These polymers have found application as high modulus fibers and films with unique properties due to the formation of ordered solutions (lyotropic) or melts (thermotropic) which transform easily into highly oriented, extended chain structures in the solid state.


Author(s):  
Patrik Dobroň ◽  
František Chmelík ◽  
Jan Bohlen ◽  
Kerstin Hantzsche ◽  
Dietmar Letzig ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1566
Author(s):  
Oliver J. Pemble ◽  
Maria Bardosova ◽  
Ian M. Povey ◽  
Martyn E. Pemble

Chitosan-based films have a diverse range of potential applications but are currently limited in terms of commercial use due to a lack of methods specifically designed to produce thin films in high volumes. To address this limitation directly, hydrogels prepared from chitosan, chitosan-tetraethoxy silane, also known as tetraethyl orthosilicate (TEOS) and chitosan-glutaraldehyde have been used to prepare continuous thin films using a slot-die technique which is described in detail. By way of preliminary analysis of the resulting films for comparison purposes with films made by other methods, the mechanical strength of the films produced was assessed. It was found that as expected, the hybrid films made with TEOS and glutaraldehyde both show a higher yield strength than the films made with chitosan alone. In all cases, the mechanical properties of the films were found to compare very favorably with similar measurements reported in the literature. In order to assess the possible influence of the direction in which the hydrogel passes through the slot-die on the mechanical properties of the films, testing was performed on plain chitosan samples cut in a direction parallel to the direction of travel and perpendicular to this direction. It was found that there was no evidence of any mechanical anisotropy induced by the slot die process. The examples presented here serve to illustrate how the slot-die approach may be used to create high-volume, high-area chitosan-based films cheaply and rapidly. It is suggested that an approach of the type described here may facilitate the use of chitosan-based films for a wide range of important applications.


2021 ◽  
Vol 7 (11) ◽  
pp. eabe9446 ◽  
Author(s):  
Mark J. Mondrinos ◽  
Farid Alisafaei ◽  
Alex Y. Yi ◽  
Hossein Ahmadzadeh ◽  
Insu Lee ◽  
...  

Here, we present an approach to model and adapt the mechanical regulation of morphogenesis that uses contractile cells as sculptors of engineered tissue anisotropy in vitro. Our method uses heterobifunctional cross-linkers to create mechanical boundary constraints that guide surface-directed sculpting of cell-laden extracellular matrix hydrogel constructs. Using this approach, we engineered linearly aligned tissues with structural and mechanical anisotropy. A multiscale in silico model of the sculpting process was developed to reveal that cell contractility increases as a function of principal stress polarization in anisotropic tissues. We also show that the anisotropic biophysical microenvironment of linearly aligned tissues potentiates soluble factor-mediated tenogenic and myogenic differentiation of mesenchymal stem cells. The application of our method is demonstrated by (i) skeletal muscle arrays to screen therapeutic modulators of acute oxidative injury and (ii) a 3D microphysiological model of lung cancer cachexia to study inflammatory and oxidative muscle injury induced by tumor-derived signals.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3869
Author(s):  
Yu Liang ◽  
Jun Ma ◽  
Baogang Zhou ◽  
Wei Li

Mechanical anisotropy behaviors are investigated in slightly rolled Inconel718 alloy with string-like δ phase and carbides produced during various solid-solution and aging treatments. A weak anisotropy in the strengths and rupture properties at 650 °C is visible, whereas ductility, i.e., reduction in area (RA) and impact toughness (CVN), presents a sound anisotropy behavior. MC carbides promote the operation of slip systems and thus are conducive to weakening the strength anisotropy. The RA anisotropy mainly stems from high-density δ phase particles that provide more crack nucleation sites and stimulate rapid propagation because of the shorter bridge distance between micro-cracks at the rolling direction. In contrast, CVN anisotropy arises from both δ phase and carbides at a lower solid-solution temperature of 940 °C but only depends on carbides at 980 °C where the δ phase fully dissolves. Apart from dislocation motions operated at room temperature, the activated grain boundary processes are responsible for the weak anisotropy of rupture properties at the elevated temperature. This work provides a guideline for technological applications in the hot working processes for Inconel718 alloys.


Sign in / Sign up

Export Citation Format

Share Document