Verification of hotspots of genetic diversity in Korean population of Grateloupia asiatica and G. jejuensis (Rhodophyta) show low genetic diversity and similar geographic distribution

2021 ◽  
Author(s):  
Mi Yeon Yang ◽  
Su Yeon Kim ◽  
Myung Sook Kim
PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7297 ◽  
Author(s):  
Hideyuki Ito ◽  
Miho Inoue-Murayama

We examined genetic diversity of the wild Tsushima leopard cat—a regional population of the Amur leopard cat—using microsatellite markers. In addition, we compared genetic diversity of the Tsushima leopard cat with that of the Korean population of Amur leopard cat. Although bias should be considered when applying cross-species amplification, the Tsushima leopard cat showed a lower index of molecular genetic diversity than did the Korean population. These results were consistent with those obtained using other genetic markers, such as mitochondrial DNA and Y chromosome sequences. This low genetic diversity of the wild Tsushima leopard cat may be derived from the founding population. Furthermore, our results suggest that the captive populations held in Japanese zoos may show extremely low genetic diversity, leading to difficulties in genetic management of the Tsushima leopard cat. Moreover, the two regional populations were clearly separated using these marker sets. In the present study, we demonstrated that the genetic diversity of the Tsushima leopard cat is extremely low compared with that of the continental regional population. Importantly, the Japanese captive population for ex situ conservation was derived from a founding population with extremely low genetic diversity; hence, we assume that both the captive and wild populations showed extremely low genetic diversities. Our findings emphasize the need to develop carefully considered management strategies for genetic conservation.


2018 ◽  
Author(s):  
Toni I. Gossmann​ ◽  
Achchuthan Shanmugasundram​ ◽  
Stefan Börno ◽  
Ludovic Duvaux ◽  
Christophe Lemaire​ ◽  
...  

Open Medicine ◽  
2006 ◽  
Vol 1 (4) ◽  
pp. 392-398
Author(s):  
Kazima Bulayeva ◽  
John McGrath

AbstractWhile the season-of-birth effect is one of the most consistent epidemiological features of schizophrenia, there is a lack of consistency with respect to the interaction between season of birth and family history of schizophrenia. Apart from family history, measures related to consanguinity can be used as proxy markers of genomic heterogeneity. Thus, these measures may provide an alternate, indirect index of genetic susceptibility. We had the opportunity to explore the interaction between season of birth and measure of consanguinity in well-described genetic isolates in Daghestan, some of which are known for their relatively high prevalence of schizophrenia. Our previous population-genetic study showed Daghestan has an extremely high genetic diversity between the ethnic populations and a low genetic diversity within them. The isolates selected for this study include some with more than 200 and some with less than 100 generations of demographical history since their founding. Based on pedigrees of multiply-affected families, we found that among individuals with schizophrenia, the measure of consanguinity was significantly higher in the parents of those born in winter/spring compared to those born in summer/autumn. Furthermore, compared to summer/autumn born, winter/spring born individuals with schizophrenia had an earlier age-of-onset, and more prominent auditory hallucinations. Our results suggest that the offspring of consanguineous marriages, and thus those with reduced allelic heterogeneity, may be more susceptible to the environmental factor(s) underpinning the season-of-the effect in schizophrenia.


2016 ◽  
Vol 65 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Y. C. Miao ◽  
Z. J. Zhang ◽  
J. R. Su

Abstract Taxus yunnanensis, which is an endangered tree that is considered valuable because it contains the effective natural anticancer metabolite taxol and heteropolysaccharides, has long suffered from severe habitat fragmentation. In this study, the levels of genetic diversity in two populations of 136 individuals were analyzed based on eleven polymorphic microsatellite loci. Our results suggested that these two populations were characterized by low genetic diversity (NE = 2.303/2.557; HO = 0.168/0.142; HE = 0.453/0.517), a population bottleneck, a low effective population size (Ne = 7/9), a high level of inbreeding (FIS = 0.596/0.702), and a weak, but significant spatial genetic structure (Sp = 0.001, b = −0.001*). Habitat fragmentation, seed shadow overlap and limited seed and pollen dispersal and potential selfing may have contributed to the observed gene tic structure. The results of the present study will enable development of practical conservation measures to effectively conserve the valuable genetic resources of this endangered plant.


Sign in / Sign up

Export Citation Format

Share Document