scholarly journals Nutrient pathways and their susceptibility to past and future change in the Eurasian Arctic Ocean

AMBIO ◽  
2021 ◽  
Author(s):  
Robyn E. Tuerena ◽  
Claire Mahaffey ◽  
Sian F. Henley ◽  
Camille de la Vega ◽  
Louisa Norman ◽  
...  

AbstractClimate change is altering nutrient cycling within the Arctic Ocean, having knock-on effects to Arctic ecosystems. Primary production in the Arctic is principally nitrogen-limited, particularly in the western Pacific-dominated regions where denitrification exacerbates nitrogen loss. The nutrient status of the eastern Eurasian Arctic remains under debate. In the Barents Sea, primary production has increased by 88% since 1998. To support this rapid increase in productivity, either the standing stock of nutrients has been depleted, or the external nutrient supply has increased. Atlantic water inflow, enhanced mixing, benthic nitrogen cycling, and land–ocean interaction have the potential to alter the nutrient supply through addition, dilution or removal. Here we use new datasets from the Changing Arctic Ocean program alongside historical datasets to assess how nitrate and phosphate concentrations may be changing in response to these processes. We highlight how nutrient dynamics may continue to change, why this is important for regional and international policy-making and suggest relevant research priorities for the future.

2016 ◽  
Vol 12 (11) ◽  
pp. 20160223 ◽  
Author(s):  
Mati Kahru ◽  
Zhongping Lee ◽  
B. Greg Mitchell ◽  
Cynthia D. Nevison

The influence of decreasing Arctic sea ice on net primary production (NPP) in the Arctic Ocean has been considered in multiple publications but is not well constrained owing to the potentially large errors in satellite algorithms. In particular, the Arctic Ocean is rich in coloured dissolved organic matter (CDOM) that interferes in the detection of chlorophyll a concentration of the standard algorithm, which is the primary input to NPP models. We used the quasi-analytic algorithm (Lee et al . 2002 Appl. Opti. 41 , 5755−5772. ( doi:10.1364/AO.41.005755 )) that separates absorption by phytoplankton from absorption by CDOM and detrital matter. We merged satellite data from multiple satellite sensors and created a 19 year time series (1997–2015) of NPP. During this period, both the estimated annual total and the summer monthly maximum pan-Arctic NPP increased by about 47%. Positive monthly anomalies in NPP are highly correlated with positive anomalies in open water area during the summer months. Following the earlier ice retreat, the start of the high-productivity season has become earlier, e.g. at a mean rate of −3.0 d yr −1 in the northern Barents Sea, and the length of the high-productivity period has increased from 15 days in 1998 to 62 days in 2015. While in some areas, the termination of the productive season has been extended, owing to delayed ice formation, the termination has also become earlier in other areas, likely owing to limited nutrients.


2020 ◽  
Author(s):  
Robyn E. Tuerena ◽  
Joanne Hopkins ◽  
Raja S. Ganeshram ◽  
Louisa Norman ◽  
Camille de la Vega ◽  
...  

Abstract. While the entire Arctic Ocean is warming rapidly, the Barents Sea in particular is experiencing significant warming and sea ice retreat. An increase in ocean heat transport from the Atlantic is causing the Barents Sea to be transformed from a cold, salinity stratified system into a warmer, less-stratified Atlantic-dominated climate regime. Productivity in the Barents Sea shelf is fuelled by waters of Atlantic origin (AW), which are ultimately exported to the Arctic basin. The consequences of this current regime shift on the nutrient characteristics of the Barents Sea are poorly defined. Here we use the stable isotopic ratios of nitrate (δ15N-NO3, δ18O-NO3), to determine the uptake and modification of AW nutrients in the Barents Sea. In summer months, phytoplankton consume nitrate, surface waters become nitrate depleted, and particulate nitrogen (δ15N-PN) reflects the AW nitrate source. The ammonification of organic matter in shallow sediments resupplies N to the water column through the season. Low δ18O-NO3 in the northern Barents Sea reveals that the nitrate in lower temperature Arctic Waters is > 80 % regenerated through seasonal nitrification. During on shelf nutrient uptake and regeneration, there is no significant change to δ15N-NO3 or N*, suggesting benthic denitrification does not impart an isotopic imprint on pelagic nitrate. Our results demonstrate that the Barents Sea is distinct from other Arctic shelves, where coupled partial nitrification-denitrification enriches δ15N-NO3 and decreases N*. Our results suggest that any current or future changes to productivity on the Barents Sea shelf are unlikely to alter the magnitude or isotopic signature of nutrient supply exported to the central Arctic basin. However, we suggest that the AW nutrient source ultimately determines Barents Sea productivity and changes to this supply may alter Barents Sea primary production and subsequent nutrient supply to the central Arctic Ocean.


AMBIO ◽  
2021 ◽  
Author(s):  
Henry P. Huntington ◽  
Andrey Zagorsky ◽  
Bjørn P. Kaltenborn ◽  
Hyoung Chul Shin ◽  
Jackie Dawson ◽  
...  

AbstractThe Arctic Ocean is undergoing rapid change: sea ice is being lost, waters are warming, coastlines are eroding, species are moving into new areas, and more. This paper explores the many ways that a changing Arctic Ocean affects societies in the Arctic and around the world. In the Arctic, Indigenous Peoples are again seeing their food security threatened and cultural continuity in danger of disruption. Resource development is increasing as is interest in tourism and possibilities for trans-Arctic maritime trade, creating new opportunities and also new stresses. Beyond the Arctic, changes in sea ice affect mid-latitude weather, and Arctic economic opportunities may re-shape commodities and transportation markets. Rising interest in the Arctic is also raising geopolitical tensions about the region. What happens next depends in large part on the choices made within and beyond the Arctic concerning global climate change and industrial policies and Arctic ecosystems and cultures.


2012 ◽  
Vol 69 (7) ◽  
pp. 1180-1193 ◽  
Author(s):  
Zachary W. Brown ◽  
Kevin R. Arrigo

Abstract Brown, Z. W., and Arrigo, K. R. 2012. Contrasting trends in sea ice and primary production in the Bering Sea and Arctic Ocean. – ICES Journal of Marine Science, 69: . Satellite remote sensing data were used to examine recent trends in sea-ice cover and net primary productivity (NPP) in the Bering Sea and Arctic Ocean. In nearly all regions, diminished sea-ice cover significantly enhanced annual NPP, indicating that light-limitation predominates across the seasonally ice-covered waters of the northern hemisphere. However, long-term trends have not been uniform spatially. The seasonal ice pack of the Bering Sea has remained consistent over time, partially because of winter winds that have continued to carry frigid Arctic air southwards over the past six decades. Hence, apart from the “Arctic-like” Chirikov Basin (where sea-ice loss has driven a 30% increase in NPP), no secular trends are evident in Bering Sea NPP, which averaged 288 ± 26 Tg C year−1 over the satellite ocean colour record (1998–2009). Conversely, sea-ice cover in the Arctic Ocean has plummeted, extending the open-water growing season by 45 d in just 12 years, and promoting a 20% increase in NPP (range 441–585 Tg C year−1). Future sea-ice loss will likely stimulate additional NPP over the productive Bering Sea shelves, potentially reducing nutrient flux to the downstream western Arctic Ocean.


2014 ◽  
Vol 11 (2) ◽  
pp. 293-308 ◽  
Author(s):  
E. E. Popova ◽  
A. Yool ◽  
Y. Aksenov ◽  
A. C. Coward ◽  
T. R. Anderson

Abstract. The Arctic Ocean is a region that is particularly vulnerable to the impact of ocean acidification driven by rising atmospheric CO2, with potentially negative consequences for calcifying organisms such as coccolithophorids and foraminiferans. In this study, we use an ocean-only general circulation model, with embedded biogeochemistry and a comprehensive description of the ocean carbon cycle, to study the response of pH and saturation states of calcite and aragonite to rising atmospheric pCO2 and changing climate in the Arctic Ocean. Particular attention is paid to the strong regional variability within the Arctic, and, for comparison, simulation results are contrasted with those for the global ocean. Simulations were run to year 2099 using the RCP8.5 (an Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) scenario with the highest concentrations of atmospheric CO2). The separate impacts of the direct increase in atmospheric CO2 and indirect effects via impact of climate change (changing temperature, stratification, primary production and freshwater fluxes) were examined by undertaking two simulations, one with the full system and the other in which atmospheric CO2 was prevented from increasing beyond its preindustrial level (year 1860). Results indicate that the impact of climate change, and spatial heterogeneity thereof, plays a strong role in the declines in pH and carbonate saturation (Ω) seen in the Arctic. The central Arctic, Canadian Arctic Archipelago and Baffin Bay show greatest rates of acidification and Ω decline as a result of melting sea ice. In contrast, areas affected by Atlantic inflow including the Greenland Sea and outer shelves of the Barents, Kara and Laptev seas, had minimal decreases in pH and Ω because diminishing ice cover led to greater vertical mixing and primary production. As a consequence, the projected onset of undersaturation in respect to aragonite is highly variable regionally within the Arctic, occurring during the decade of 2000–2010 in the Siberian shelves and Canadian Arctic Archipelago, but as late as the 2080s in the Barents and Norwegian seas. We conclude that, for future projections of acidification and carbonate saturation state in the Arctic, regional variability is significant and needs to be adequately resolved, with particular emphasis on reliable projections of the rates of retreat of the sea ice, which are a major source of uncertainty.


2009 ◽  
Vol 6 (1) ◽  
pp. 971-994 ◽  
Author(s):  
E. H. Shadwick ◽  
T. Papakyriakou ◽  
A. E. F. Prowe ◽  
D. Leong ◽  
S. A. Moore ◽  
...  

Abstract. The Arctic Ocean is expected to be disproportionately sensitive to climatic changes, and is thought to be an area where such changes might be detected. The Arctic hydrological cycle is influenced by: runoff and precipitation, sea ice formation/melting, and the inflow of saline waters from Bering and Fram Straits and the Barents Sea Shelf. Pacific water is recognizable as intermediate salinity water, with high concentrations of dissolved inorganic carbon (DIC), flowing from the Arctic Ocean to the North Atlantic via the Canadian Arctic Archipelago. We present DIC data from an east-west section through the Archipelago, as part of the Canadian International Polar Year initiatives. The fractions of Pacific and Arctic Ocean waters leaving the Archipelago and entering Baffin Bay, and subsequently the North Atlantic, are computed. The eastward transport of carbon from the Pacific, via the Arctic, to the North Atlantic is estimated. Altered mixing ratios of Pacific and freshwater in the Arctic Ocean have been recorded in recent decades. Any climatically driven alterations in the composition of waters leaving the Arctic Archipelago may have implications for anthropogenic CO2 uptake, and hence ocean acidification, in the subpolar and temperate North Atlantic.


2017 ◽  
Author(s):  
Sang Heon Lee ◽  
Jang Han Lee ◽  
Howon Lee ◽  
Jae Joong Kang ◽  
Jae Hyung Lee ◽  
...  

Abstract. The Laptev and East Siberian seas are the least biologically studied region in the Arctic Ocean, although they are highly dynamic in terms of active processing of organic matter impacting the transport to the deep Arctic Ocean. Field-measured carbon and nitrogen uptake rates of phytoplankton were conducted in the Laptev and East Siberian seas as part of the NABOS (Nansen and Amundsen Basins Observational System) program. Major inorganic nutrients were mostly depleted at 100–50 % light depths but were not depleted within the euphotic depths in the Laptev and East Siberian seas. The water column-integrated chl-a concentration in this study was significantly higher than that in the western Arctic Ocean (t-test, p > 0.01). Unexpectedly, the daily carbon and nitrogen uptake rates in this study (average ± S.D. = 110.3 ± 88.3 mg C m−2 d−1 and 37.0 ± 25.8 mg N m−2 d−1, respectively) are within previously reported ranges. Surprisingly, the annual primary production (13.2 g C m−2) measured in the field during the vegetative season is approximately one order of magnitude lower than the primary production reported from a satellite–based estimation. Further validation using field-measured observations is necessary for a better projection of the ecosystem in the Laptev and East Siberian seas responding to ongoing climate change.


2021 ◽  
Author(s):  
Elena Popova

<p>Such factors as climate, currents, morphology, riverine input, and the source rocks influence the composition of the sediments in the Arctic Ocean. Heavy minerals being quite inert in terms of transport can reflect the geology of the source rock clearly and indicate the riverine input. There is a long history of studying the heavy mineral composition of the sediments in the Arctic Ocean. The works by Vogt (1997), Kosheleva (1999), Stein (2008), and others study the distribution of the minerals both on a sea scale and oceanwide. The current study covers Russian shelf seas: Barents, Kara, Laptev, East Siberian, and Chukchi Seas. To collect the material several data sources were used: data collected by the institute VNIIOkeangeologia during numerous expeditions since 2000 for mapping the shelf, data from the old expedition reports (earlier than 2000) taken from the geological funds, and datasets from PANGAEA (www.pangaea.de). About 82 minerals and groups of minerals were included in the joint dataset. The density of the sample points varied significantly in all seas: 1394 data points in the Barents Sea, 713 in the Kara Sea, 487 in the Laptev Sea, 196 in the East Siberian Sea, and 245 in the Chukchi Sea. These data allowed comparing the areas in terms of major minerals and associations. Maps of prevailing and significant components were created in ODV (Schlitzer, 2020) to demonstrate the differences between the seas and indicate the sites of remarkable changes in the source rocks. Additionally, the standardized ratio was calculated to perform quantitative comparison: the sea average was divided by the weighted sea average and then the ratio of that number to the mineral average was found. Only the minerals present in at least four seas and amounting to at least 20 points per sea were considered. As a result, water areas with the highest content of particular minerals were detected. The ratio varied from 0 to 3,4. Combining the ratio data for various minerals allowed mapping specific groups or provinces for every sea and within the seas.</p><p> </p><p>Kosheleva, V.A., & Yashin, D.S. (1999). Bottom Sediments of the Arctic Seas. St. Petersburg: VNIIOkeangeologia, 286pp. (in Russian).</p><p>PANGAEA. Data Publisher for Earth & Environmental Science https://www.pangaea.de/</p><p>Schlitzer, R. (2020). Ocean Data View, Retrieved from https://odv.awi.de.</p><p>Stein, R. (2008). Arctic Ocean Sediments: Processes, Proxies, and Paleoenvironment. Oxford: Elsevier, 602pp.</p><p>Vogt, C. (1997). Regional and temporal variations of mineral assemblages in Arctic Ocean sediments as a climatic indicator during glacial/interglacial changes. Berichte Zur Polarforschung, 251, 309pp.</p>


Science ◽  
2020 ◽  
Vol 369 (6500) ◽  
pp. 198-202 ◽  
Author(s):  
K. M. Lewis ◽  
G. L. van Dijken ◽  
K. R. Arrigo

Historically, sea ice loss in the Arctic Ocean has promoted increased phytoplankton primary production because of the greater open water area and a longer growing season. However, debate remains about whether primary production will continue to rise should sea ice decline further. Using an ocean color algorithm parameterized for the Arctic Ocean, we show that primary production increased by 57% between 1998 and 2018. Surprisingly, whereas increases were due to widespread sea ice loss during the first decade, the subsequent rise in primary production was driven primarily by increased phytoplankton biomass, which was likely sustained by an influx of new nutrients. This suggests a future Arctic Ocean that can support higher trophic-level production and additional carbon export.


Author(s):  
Sian F. Henley ◽  
Marie Porter ◽  
Laura Hobbs ◽  
Judith Braun ◽  
Robin Guillaume-Castel ◽  
...  

Nutrient supply to the surface ocean is a key factor regulating primary production in the Arctic Ocean under current conditions and with ongoing warming and sea ice losses. Here we present seasonal nitrate concentration and hydrographic data from two oceanographic moorings on the northern Barents shelf between autumn 2017 and summer 2018. The eastern mooring was sea ice-covered to varying degrees during autumn, winter and spring, and was characterized by more Arctic-like oceanographic conditions, while the western mooring was ice-free year-round and showed a greater influence of Atlantic water masses. The seasonal cycle in nitrate dynamics was similar under ice-influenced and ice-free conditions, with biological nitrate uptake beginning near-synchronously in early May, but important differences between the moorings were observed. Nitrate supply to the surface ocean preceding and during the period of rapid drawdown was greater at the ice-free more Atlantic-like western mooring, and nitrate drawdown occurred more slowly over a longer period of time. This suggests that with ongoing sea ice losses and Atlantification, the expected shift from more Arctic-like ice-influenced conditions to more Atlantic-like ice-free conditions is likely to increase nutrient availability and the duration of seasonal drawdown in this Arctic shelf region. The extent to which this increased nutrient availability and longer drawdown periods will lead to increases in total nitrate uptake, and support the projected increases in primary production, will depend on changes in upper ocean stratification and their effect on light availability to phytoplankton as changes in climate and the physical environment proceed. This article is part of the theme issue ‘The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Sign in / Sign up

Export Citation Format

Share Document