scholarly journals Nitrate assimilation and regeneration in the Barents Sea: insights from nitrogen isotopes

2020 ◽  
Author(s):  
Robyn E. Tuerena ◽  
Joanne Hopkins ◽  
Raja S. Ganeshram ◽  
Louisa Norman ◽  
Camille de la Vega ◽  
...  

Abstract. While the entire Arctic Ocean is warming rapidly, the Barents Sea in particular is experiencing significant warming and sea ice retreat. An increase in ocean heat transport from the Atlantic is causing the Barents Sea to be transformed from a cold, salinity stratified system into a warmer, less-stratified Atlantic-dominated climate regime. Productivity in the Barents Sea shelf is fuelled by waters of Atlantic origin (AW), which are ultimately exported to the Arctic basin. The consequences of this current regime shift on the nutrient characteristics of the Barents Sea are poorly defined. Here we use the stable isotopic ratios of nitrate (δ15N-NO3, δ18O-NO3), to determine the uptake and modification of AW nutrients in the Barents Sea. In summer months, phytoplankton consume nitrate, surface waters become nitrate depleted, and particulate nitrogen (δ15N-PN) reflects the AW nitrate source. The ammonification of organic matter in shallow sediments resupplies N to the water column through the season. Low δ18O-NO3 in the northern Barents Sea reveals that the nitrate in lower temperature Arctic Waters is > 80 % regenerated through seasonal nitrification. During on shelf nutrient uptake and regeneration, there is no significant change to δ15N-NO3 or N*, suggesting benthic denitrification does not impart an isotopic imprint on pelagic nitrate. Our results demonstrate that the Barents Sea is distinct from other Arctic shelves, where coupled partial nitrification-denitrification enriches δ15N-NO3 and decreases N*. Our results suggest that any current or future changes to productivity on the Barents Sea shelf are unlikely to alter the magnitude or isotopic signature of nutrient supply exported to the central Arctic basin. However, we suggest that the AW nutrient source ultimately determines Barents Sea productivity and changes to this supply may alter Barents Sea primary production and subsequent nutrient supply to the central Arctic Ocean.

2021 ◽  
Vol 18 (2) ◽  
pp. 637-653
Author(s):  
Robyn E. Tuerena ◽  
Joanne Hopkins ◽  
Raja S. Ganeshram ◽  
Louisa Norman ◽  
Camille de la Vega ◽  
...  

Abstract. While the entire Arctic Ocean is warming rapidly, the Barents Sea in particular is experiencing significant warming and sea ice retreat. An increase in ocean heat transport from the Atlantic is causing the Barents Sea to be transformed from a cold, salinity-stratified system into a warmer, less-stratified Atlantic-dominated climate regime. Productivity in the Barents Sea shelf is fuelled by waters of Atlantic origin (AW) which are ultimately exported to the Arctic Basin. The consequences of this current regime shift on the nutrient characteristics of the Barents Sea are poorly defined. Here we use the stable isotopic ratios of nitrate (δ15N-NO3, δ18O-NO3) to determine the uptake and modification of AW nutrients in the Barents Sea. In summer months, phytoplankton consume nitrate, surface waters become nitrate depleted, and particulate nitrogen (δ15N-PN) reflects the AW nitrate source. The ammonification of organic matter in shallow sediments resupplies N to the water column and replenishes the nitrate inventory for the following season. Low δ18O-NO3 in the northern Barents Sea reveals that the nitrate in lower-temperature Arctic waters is > 80 % regenerated through seasonal nitrification. During on-shelf nutrient uptake and regeneration, there is no significant change to δ15N-NO3 or N*, suggesting that benthic denitrification does not impart an isotopic imprint on pelagic nitrate. Our results demonstrate that the Barents Sea is distinct from other Arctic shelves where benthic denitrification enriches δ15N-NO3 and decreases N*. As nutrients are efficiently recycled in the Barents Sea and there is no significant loss of N through benthic denitrification, changes to Barents Sea productivity are unlikely to alter N availability on shelf or the magnitude of N advected to the central Arctic Basin. However, we suggest that the AW nutrient source ultimately determines Barents Sea productivity and that changes to AW delivery have the potential to alter Barents Sea primary production and subsequent nutrient supply to the central Arctic Ocean.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1170
Author(s):  
Sergey Sakerin ◽  
Dmitry Kabanov ◽  
Valery Makarov ◽  
Viktor Pol’kin ◽  
Svetlana Popova ◽  
...  

The results from studies of aerosol in the Arctic atmosphere are presented: the aerosol optical depth (AOD), the concentrations of aerosol and black carbon, as well as the chemical composition of the aerosol. The average aerosol characteristics, measured during nine expeditions (2007–2018) in the Eurasian sector of the Arctic Ocean, had been 0.068 for AOD (0.5 µm); 2.95 cm−3 for particle number concentrations; 32.1 ng/m3 for black carbon mass concentrations. Approximately two–fold decrease of the average characteristics in the eastern direction (from the Barents Sea to Chukchi Sea) is revealed in aerosol spatial distribution. The average aerosol characteristics over the Barents Sea decrease in the northern direction: black carbon concentrations by a factor of 1.5; particle concentrations by a factor of 3.7. These features of the spatial distribution are caused mainly by changes in the content of fine aerosol, namely: by outflows of smokes from forest fires and anthropogenic aerosol. We considered separately the measurements of aerosol characteristics during two expeditions in 2019: in the north of the Barents Sea (April) and along the Northern Sea Route (July–September). In the second expedition the average aerosol characteristics turned out to be larger than multiyear values: AOD reached 0.36, particle concentration up to 8.6 cm−3, and black carbon concentration up to 179 ng/m3. The increased aerosol content was affected by frequent outflows of smoke from forest fires. The main (99%) contribution to the elemental composition of aerosol in the study regions was due to Ca, K, Fe, Zn, Br, Ni, Cu, Mn, and Sr. The spatial distribution of the chemical composition of aerosols was analogous to that of microphysical characteristics. The lowest concentrations of organic and elemental carbon (OC, EC) and of most elements are observed in April in the north of the Barents Sea, and the maximal concentrations in Far East seas and in the south of the Barents Sea. The average contents of carbon in aerosol over seas of the Asian sector of the Arctic Ocean are OC = 629 ng/m3, EC = 47 ng/m3.


2020 ◽  
Author(s):  
Léon Chafik ◽  
Sara Broomé

<p>The Arctic Ocean has been receiving more of the warm and saline Atlantic Water in the past decades. This water mass enters the Arctic Ocean via two Arctic gateways: the Barents Sea Opening and the Fram Strait. Here, we focus on the fractionation of Atlantic Water at these two gateways using a Lagrangian approach based on satellite-derived geostrophic velocities. Simulated particles are released at 70N at the inner and outer branch of the North Atlantic current system in the Nordic Seas. The trajectories toward the Fram Strait and Barents Sea Opening are found to be largely steered by the bottom topography and there is an indication of an anti-phase relationship in the number of particles reaching the gateways. There is, however, a significant cross-over of particles from the outer branch to the inner branch and into the Barents Sea, which is found to be related to high eddy kinetic energy between the branches. This cross-over may be important for Arctic climate variability.</p>


2007 ◽  
Vol 4 (6) ◽  
pp. 897-931
Author(s):  
R. C. Levine ◽  
D. J. Webb

Abstract. Following meteorological practice the definition of available potential energy in the ocean is conventionally defined in terms of the properties of the global ocean. However there is also a requirement for a localised definition, for example the energy released when shelf water cascades down a continental shelf in the Arctic and enters a boundary current. In this note we start from first principals to obtain an exact expression for the available energy (AE) in such a situation. We show that the available energy depends on enstrophy and gravity. We also show that it is exactly equal to the work done by the pressure gradient and by buoyancy. The results are used to investigate the distribution of AE in the Barents Sea and surrounding regions relative to the interior of the Arctic Ocean. We find that water entering the Barents Sea from the Atlantic already has a high AE, that it is increased by cooling but that much of the increase is lost overcoming turbulence during the passage through the region to the Arctic Ocean. However on entering the Arctic enough available energy remains to drive a significant current around the margin of the ocean. The core of raised available energy also acts as a tracer which can be followed along the continental slope beyond the dateline.


2019 ◽  
Vol 59 (1) ◽  
pp. 112-122 ◽  
Author(s):  
S. B. Krasheninnikova ◽  
M. A. Krasheninnikova

Based on the spectral analysis of a number of estimates of the ice extent of the Barents Sea, obtained from instrumental observational data for 1900–2014, and for the selected CMIP5 project models (MPI-ESM-LR, MPI-ESMMR and GFDL-CM3) for 1900–2005, a typical period of ~60‑year inter-annual variability associated with the Atlantic multidecadal oscillation (AMO) in conditions of a general significant decrease in the ice extent of the Barents Sea, which, according to observations and model calculations, was 20 and 15%, respectively, which confirms global warming. The maximum contribution to the total dispersion of temperature, ice cover of the Barents Sea, AMO, introduces variability with periods of more than 20 years and trends that are 47, 20, 51% and 33, 57, 30%, respectively. On the basis of the cross correlation analysis,  significant links have been established between the ice extent of the Barents Sea, AMO, and North Atlantic Oscillation (NAO) for the  period 1900–2014. A significant negative connection (R = −0.8) of ice cover and Atlantic multi-decadal oscillations was revealed at periods of more than 20 years with a shift of 1–2 years; NAO and ice cover (R = −0.6) with a shift of 1–2 years for periods of 10–20 years; AMO and NAO (R = −0.4 ÷ −0.5) with a 3‑year shift with AMO leading at 3–4, 6–8 and more than 20 years. The periods of the ice cover growth are specified: 1950–1980 and the reduction of the ice cover: the 1920–1950 and the 1980–2010 in the Barents Sea. Intensification of the transfer of warm waters from the North Atlantic to the Arctic basin, under the atmospheric influence caused by the NAO, accompanied by the growth of AMO leads to an increase in temperature, salinity and a decrease of ice cover in the Barents Sea. During periods of ice cover growth, opposite tendencies appear. The decrease in the ice cover area of the entire Northern Hemisphere by 1.5 × 106 km2 since the mid-1980s. to the beginning of the 2010, identified in the present work on NOAA satellite data, confirms the results obtained on the change in ice extent in the Barents Sea.


2021 ◽  
Author(s):  
Klaus Dethloff ◽  
Wieslaw Maslowski ◽  
Stefan Hendricks ◽  
Younjoo Lee ◽  
Helge F. Goessling ◽  
...  

Abstract. As the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) project went into effect during the winter of 2019/2020, the Arctic Oscillation (AO) has experienced some of the largest shifts from a highly negative index in November 2019 to an extremely positive index during January-February-March (JFM) 2020. Here we analyse the sea ice thickness (SIT) distribution based on CryoSat-2/SMOS satellite data augmented with results from the hindcast simulation by the fully coupled Regional Arctic System Model (RASM) for the time period from November 2019 through March 2020. A notable result of the positive AO phase during JFM 2020 were large SIT anomalies, up to 1.3 m, which emerged in the Barents-Sea (BS), along the northeastern Canadian coast and in parts of the central Arctic Ocean. These anomalies appear to be driven by nonlinear interactions between thermodynamic and dynamic processes. In particular, in the Barents- and Kara Seas (BKS) they are a result of an enhanced ice growth connected with the colder temperature anomalies and the consequence of intensified atmospheric-driven sea ice transport and deformations (i.e. divergence and shear) in this area. Low-pressure anomalies, which developed over the Eastern Arctic during JFM 2020, increased northerly winds from the cold Arctic Ocean to the BS and accelerated the southward drift of the MOSAiC ice floe. The satellite-derived and model-simulated sea ice velocity anomalies, which compared well during JFM 2020, indicate a strong acceleration of the Transpolar Drift relative to the mean for the past decade, with intensified speeds up to 6 km/day. As a consequence, sea ice transport and deformations driven by atmospheric wind forcing accounted for bulk of SIT anomalies, especially in January and February 2020. The unusual AO shift and the related sea ice anomalies during the MOSAiC winter 2019/20 are within the range of simulated states in the forecast ensemble. RASM intra-annual ensemble forecast simulations, forced with different atmospheric boundary conditions from November 1, 2019 through April 30, 2020, show a pronounced internally generated variability in the sea ice volume. A comparison of the respective SIT distribution and turbulent heat fluxes during the positive AO phase in JFM 2020 and the negative AO phase in JFM 2010 further corroborates the conclusion, that winter sea ice conditions of the Arctic Ocean can be significantly altered by AO variability.


2020 ◽  
Author(s):  
Vladimir Ivanov ◽  
Ivan Frolov ◽  
Kirill Filchuk

<p>In the recent few years the topic of accelerated sea ice loss, and related changes in the vertical structure of water masses in the East-Atlantic sector of the Arctic Ocean, including the Barents Sea and the western part of the Nansen Basin, has been in the foci of multiple studies. This region even earned the name the “Arctic warming hotspot”, due to the extreme retreat of sea ice and clear signs of change in the vertical hydrographic structure from the Arctic type to the sub-Arctic one. A gradual increase in temperature and salinity in this area has been observed since the mid-2000s. This trend is hypothetically associated with a general decrease in the volume of sea ice in the Arctic Ocean, which leads to a decrease of ice import in the Barents Sea, salinization, weakening of density stratification, intensification of vertical mixing and an increase of heat and salt fluxes from the deep to the upper mixed layer. The result of such changes is a further reduction of sea ice, i.e. implementation of positive feedback, which is conventionally refereed as the “atlantification. Due to the fact that the Barents Sea is a relatively shallow basin, the process of atlantification might develop here much faster than in the deep Nansen Basin. Thus, theoretically, the hydrographic regime in the northern part of the Barents Sea may rapidly transform to a “Nordic Seas – wise”, a characteristic feature of which is the year-round absence of the ice cover with debatable consequences for the climate and ecosystem of the region and adjacent land areas. Due to the obvious reasons, historical observations in the Barents Sea mostly cover the summer season. Here we present a rare oceanographic data, collected during the late winter - early spring in 2019. Measurements were occupied at four sequential oceanographic surveys from the boundary between the Norwegian Sea and the Barents Sea – the so called Barents Sea opening to the boundary between the Barents Sea and the Kara Sea. Completed hydrological sections allowed us to estimate the contribution of the winter processes in the Atlantic Water transformation at the end of the winter season. Characteristic feature of the observed transformation is the homogenization of the near-to-bottom part of the water column with remaining stratification in the upper part. A probable explanation of such changes is the dominance of shelf convection and cascading of dense water over the open sea convection. In this case, complete homogenization of the water column does not occur, since convection in the open sea is impeded by salinity and density stratification, which is maintained by melting of the imported sea ice in the relatively warm water. The study was supported by RFBR grant # 18-05-60083.</p>


2021 ◽  
Vol 67 (4) ◽  
pp. 318-327
Author(s):  
F. K. Tuzov

The article discusses the possible relationship between changes in the ice cover area of the shelf seas of the Arctic Ocean and the intensity of dense water cascading, based on calculation data obtained with the NEMO model for the period 1986–2010, with the findings issued at 5-day intervals and a spatial resolution of 1/10°. The cascading cases were calculated using an innovative method developed by the author. The work is based on the assumption that as the ice cover in the seas retreats, the formation of cooled dense water masses is intensified, which submerge and flow down the slope from the shelf to great depths. Thus, in the Arctic shelf seas, the mechanism of water densification due to cooling is added to the mechanism of water densification during ice formation, or, replaces it for certain regions. It was found that in the Barents Sea, the Laptev Sea and the Beaufort Sea, a decrease in the ice cover area causes an increase in the number of cases of cascading. However, in most of the Arctic seas, as the area of ice cover decreases, the number of cases of cascading also decreases. As a consequence, for the whole Arctic shelf area, the number of cases of cascading also decreases with decreasing ice cover. It is shown that in the Beaufort Sea the maximum number of cascading cases was observed in the winter period of 2007–2008, which was preceded by the summer minimum of the ice cover area in the Arctic Ocean. In the Barents Sea after 2000, a situation has been observed where the ice area has been decreasing to zero values, whereas the number of cascading cases has for some time (1 month approximately) remained close to high winter values. This possibly means that the cooling and densification of the waters in ice-free areas occurs due to thermal convection. Based on the calculation of the number of cases of cascading, it can be argued that the intensification of cascading due to a reduction in the ice cover is a feature of individual seas of the Arctic Ocean, those in which there is no excessive freshening of the upper water layer due to ice melting.


2017 ◽  
Vol 27 (2) ◽  
pp. 59-63
Author(s):  
Ivan O. Nekhaev

New findings of four gastropod species: Melanella laurae, Hemiaclis ventrosa (family Eulimidae), Chrysallida sublustris and Odostomia acuta (family Pyramidellidae) are described. O. acuta was previously confused by Russian authors with H. ventrosa, distribution of both species in the Barents Sea is limited to the coastal waters of Finmark and Murman. M. laurae and C. sublustris were found for the first time in the adjacent to the Barents Sea parts of the Arctic Ocean.


Sign in / Sign up

Export Citation Format

Share Document