scholarly journals The Use, Standardization, and Interpretation of Brain Imaging Data in Clinical Trials of Neurodegenerative Disorders

2021 ◽  
Author(s):  
Adam J. Schwarz

AbstractImaging biomarkers play a wide-ranging role in clinical trials for neurological disorders. This includes selecting the appropriate trial participants, establishing target engagement and mechanism-related pharmacodynamic effect, monitoring safety, and providing evidence of disease modification. In the early stages of clinical drug development, evidence of target engagement and/or downstream pharmacodynamic effect—especially with a clear relationship to dose—can provide confidence that the therapeutic candidate should be advanced to larger and more expensive trials, and can inform the selection of the dose(s) to be further tested, i.e., to “de-risk” the drug development program. In these later-phase trials, evidence that the therapeutic candidate is altering disease-related biomarkers can provide important evidence that the clinical benefit of the compound (if observed) is grounded in meaningful biological changes. The interpretation of disease-related imaging markers, and comparability across different trials and imaging tools, is greatly improved when standardized outcome measures are defined. This standardization should not impinge on scientific advances in the imaging tools per se but provides a common language in which the results generated by these tools are expressed. PET markers of pathological protein aggregates and structural imaging of brain atrophy are common disease-related elements across many neurological disorders. However, PET tracers for pathologies beyond amyloid β and tau are needed, and the interpretability of structural imaging can be enhanced by some simple considerations to guard against the possible confound of pseudo-atrophy. Learnings from much-studied conditions such as Alzheimer’s disease and multiple sclerosis will be beneficial as the field embraces rarer diseases.

2005 ◽  
Vol 10 (4) ◽  
pp. 259-266 ◽  
Author(s):  
Homer H. Pien ◽  
Alan J. Fischman ◽  
James H. Thrall ◽  
A.Gregory Sorensen

2015 ◽  
Vol 6 (3) ◽  
pp. 357-375 ◽  
Author(s):  
Agata Ptaszynska ◽  
Samuel M. Cohen ◽  
Edward M. Messing ◽  
Timothy P. Reilly ◽  
Eva Johnsson ◽  
...  

2010 ◽  
Vol 9 (4) ◽  
pp. 214-219
Author(s):  
Robyn J. Barst

Drug development is the entire process of introducing a new drug to the market. It involves drug discovery, screening, preclinical testing, an Investigational New Drug (IND) application in the US or a Clinical Trial Application (CTA) in the EU, phase 1–3 clinical trials, a New Drug Application (NDA), Food and Drug Administration (FDA) review and approval, and postapproval studies required for continuing safety evaluation. Preclinical testing assesses safety and biologic activity, phase 1 determines safety and dosage, phase 2 evaluates efficacy and side effects, and phase 3 confirms efficacy and monitors adverse effects in a larger number of patients. Postapproval studies provide additional postmarketing data. On average, it takes 15 years from preclinical studies to regulatory approval by the FDA: about 3.5–6.5 years for preclinical, 1–1.5 years for phase 1, 2 years for phase 2, 3–3.5 years for phase 3, and 1.5–2.5 years for filing the NDA and completing the FDA review process. Of approximately 5000 compounds evaluated in preclinical studies, about 5 compounds enter clinical trials, and 1 compound is approved (Tufts Center for the Study of Drug Development, 2011). Most drug development programs include approximately 35–40 phase 1 studies, 15 phase 2 studies, and 3–5 pivotal trials with more than 5000 patients enrolled. Thus, to produce safe and effective drugs in a regulated environment is a highly complex process. Against this backdrop, what is the best way to develop drugs for pulmonary arterial hypertension (PAH), an orphan disease often rapidly fatal within several years of diagnosis and in which spontaneous regression does not occur?


Author(s):  
Michael Tansey

Clinical research is heavily regulated and involves coordination of numerous pharmaceutical-related disciplines. Each individual trial involves contractual, regulatory, and ethics approval at each site and in each country. Clinical trials have become so complex and government requirements so stringent that researchers often approach trials too cautiously, convinced that the process is bound to be insurmountably complicated and riddled with roadblocks. A step back is needed, an objective examination of the drug development process as a whole, and recommendations made for streamlining the process at all stages. With Intelligent Drug Development, Michael Tansey systematically addresses the key elements that affect the quality, timeliness, and cost-effectiveness of the drug-development process, and identifies steps that can be adjusted and made more efficient. Tansey uses his own experiences conducting clinical trials to create a guide that provides flexible, adaptable ways of implementing the necessary processes of development. Moreover, the processes described in the book are not dependent either on a particular company structure or on any specific technology; thus, Tansey's approach can be implemented at any company, regardless of size. The book includes specific examples that illustrate some of the ways in which the principles can be applied, as well as suggestions for providing a better context in which the changes can be implemented. The protocols for drug development and clinical research have grown increasingly complex in recent years, making Intelligent Drug Development a needed examination of the pharmaceutical process.


Author(s):  
Laure Fournier ◽  
Lena Costaridou ◽  
Luc Bidaut ◽  
Nicolas Michoux ◽  
Frederic E. Lecouvet ◽  
...  

Abstract Existing quantitative imaging biomarkers (QIBs) are associated with known biological tissue characteristics and follow a well-understood path of technical, biological and clinical validation before incorporation into clinical trials. In radiomics, novel data-driven processes extract numerous visually imperceptible statistical features from the imaging data with no a priori assumptions on their correlation with biological processes. The selection of relevant features (radiomic signature) and incorporation into clinical trials therefore requires additional considerations to ensure meaningful imaging endpoints. Also, the number of radiomic features tested means that power calculations would result in sample sizes impossible to achieve within clinical trials. This article examines how the process of standardising and validating data-driven imaging biomarkers differs from those based on biological associations. Radiomic signatures are best developed initially on datasets that represent diversity of acquisition protocols as well as diversity of disease and of normal findings, rather than within clinical trials with standardised and optimised protocols as this would risk the selection of radiomic features being linked to the imaging process rather than the pathology. Normalisation through discretisation and feature harmonisation are essential pre-processing steps. Biological correlation may be performed after the technical and clinical validity of a radiomic signature is established, but is not mandatory. Feature selection may be part of discovery within a radiomics-specific trial or represent exploratory endpoints within an established trial; a previously validated radiomic signature may even be used as a primary/secondary endpoint, particularly if associations are demonstrated with specific biological processes and pathways being targeted within clinical trials. Key Points • Data-driven processes like radiomics risk false discoveries due to high-dimensionality of the dataset compared to sample size, making adequate diversity of the data, cross-validation and external validation essential to mitigate the risks of spurious associations and overfitting. • Use of radiomic signatures within clinical trials requires multistep standardisation of image acquisition, image analysis and data mining processes. • Biological correlation may be established after clinical validation but is not mandatory.


Sign in / Sign up

Export Citation Format

Share Document