scholarly journals Recent Weakening in Interannual Variability of Mean Tropical Cyclogenesis Latitude over the Western North Pacific during Boreal Summer

2020 ◽  
Vol 34 (6) ◽  
pp. 1183-1198
Author(s):  
Minmin Wu ◽  
Lei Wang ◽  
Baiyang Chen
2019 ◽  
Vol 32 (23) ◽  
pp. 8167-8179 ◽  
Author(s):  
Haikun Zhao ◽  
Jie Zhang ◽  
Philip J. Klotzbach ◽  
Shaohua Chen

Abstract This study examines interdecadal changes in the interannual relationship between the extended boreal summer (May–November) tropical cyclogenesis (TCG) latitude and longitude over the western North Pacific Ocean (WNP) during 1979–2016. Increasing covariability of WNP TCG latitude and longitude is observed since 1998, which is found to be closely linked to shifting ENSO conditions and a tropical Pacific climate regime shift. Accompanied by an increasing occurrence in central Pacific (CP) ENSO events during recent decades, there has been a more consistent northwestward or southeastward shift of WNP TCG location since 1998. These coherent latitude and longitude shifts were generally not evident during 1979–97, a period characterized by a more conventional eastern Pacific (EP) ENSO pattern. Our statistical results show a robust relationship between TCG latitude and the Hadley circulation and between longitude and the Walker circulation during the period prior to and since the regime shift, and a possible physical explanation for the recent increased covariability of TCG latitude and longitude is given. During 1998–2016, there is a significant association of CP ENSO events with the intensity of both the Hadley and Walker circulations that likely caused the recent increase in the covariability of TCG latitude and longitude. However, the strong association of EP ENSO events with the intensity of the Hadley circulation but not with the Walker circulation during 1979–97 weakened the covariability of TCG latitude and longitude. In addition, changes in tropical Indian Ocean sea surface temperatures appear to also importantly contribute to the recent increased covariability of WNP TCG location.


2021 ◽  
Author(s):  
Yuqi Wang ◽  
Renguang Wu

AbstractSurface latent heat flux (LHF) is an important component in the heat exchange between the ocean and atmosphere over the tropical western North Pacific (WNP). The present study investigates the factors of seasonal mean LHF variations in boreal summer over the tropical WNP. Seasonal mean LHF is separated into two parts that are associated with low-frequency (> 90-day) and high-frequency (≤ 90-day) atmospheric variability, respectively. It is shown that low-frequency LHF variations are attributed to low-frequency surface wind and sea-air humidity difference, whereas high-frequency LHF variations are associated with both low-frequency surface wind speed and high-frequency wind intensity. A series of conceptual cases are constructed using different combinations of low- and high-frequency winds to inspect the respective effects of low-frequency wind and high-frequency wind amplitude to seasonal mean LHF variations. It is illustrated that high-frequency wind fluctuations contribute to seasonal high-frequency LHF only when their intensity exceeds the low-frequency wind speed under which there is seasonal accumulation of high-frequency LHF. When high-frequency wind intensity is smaller than the low-frequency wind speed, seasonal mean high-frequency LHF is negligible. Total seasonal mean LHF anomalies depend on relative contributions of low- and high-frequency atmospheric variations and have weak interannual variance over the tropical WNP due to cancellation of low- and high-frequency LHF anomalies.


2011 ◽  
Vol 24 (3) ◽  
pp. 927-941 ◽  
Author(s):  
Pang-chi Hsu ◽  
Tim Li ◽  
Chih-Hua Tsou

Abstract The role of scale interactions in the maintenance of eddy kinetic energy (EKE) during the extreme phases of the intraseasonal oscillation (ISO) is examined through the construction of a new eddy energetics diagnostic tool that separates the effects of ISO and a low-frequency background state (LFBS; with periods longer than 90 days). The LFBS always contributes positively toward the EKE in the boreal summer, regardless of the ISO phases. The synoptic eddies extract energy from the ISO during the ISO active phase. This positive barotropic energy conversion occurs when the synoptic eddies interact with low-level cyclonic and convergent–confluent ISO flows. This contrasts with the ISO suppressed phase during which the synoptic eddies lose kinetic energy to the ISO flow. The anticyclonic and divergent–diffluent ISO flows during the suppressed phase are responsible for the negative barotropic energy conversion. A positive (negative) EKE tendency occurs during the ISO suppressed-to-active (active-to-suppressed) transitional phase. The cause of this asymmetric EKE tendency is attributed to the spatial phase relation among the ISO vorticity, eddy structure, and EKE. The southwest–northeast-tilted synoptic disturbances interacting with cyclonic (anticyclonic) vorticity of ISO lead to a positive (negative) EKE tendency in the northwest region of the maximum EKE center. The genesis number and location and intensification rate of tropical cyclones in the western North Pacific are closely related to the barotropic energy conversion. The enhanced barotropic energy conversion favors the generation and development of synoptic seed disturbances, some of which eventually grow into tropical cyclones.


Sign in / Sign up

Export Citation Format

Share Document