Interactions between Boreal Summer Intraseasonal Oscillations and Synoptic-Scale Disturbances over the Western North Pacific. Part I: Energetics Diagnosis*

2011 ◽  
Vol 24 (3) ◽  
pp. 927-941 ◽  
Author(s):  
Pang-chi Hsu ◽  
Tim Li ◽  
Chih-Hua Tsou

Abstract The role of scale interactions in the maintenance of eddy kinetic energy (EKE) during the extreme phases of the intraseasonal oscillation (ISO) is examined through the construction of a new eddy energetics diagnostic tool that separates the effects of ISO and a low-frequency background state (LFBS; with periods longer than 90 days). The LFBS always contributes positively toward the EKE in the boreal summer, regardless of the ISO phases. The synoptic eddies extract energy from the ISO during the ISO active phase. This positive barotropic energy conversion occurs when the synoptic eddies interact with low-level cyclonic and convergent–confluent ISO flows. This contrasts with the ISO suppressed phase during which the synoptic eddies lose kinetic energy to the ISO flow. The anticyclonic and divergent–diffluent ISO flows during the suppressed phase are responsible for the negative barotropic energy conversion. A positive (negative) EKE tendency occurs during the ISO suppressed-to-active (active-to-suppressed) transitional phase. The cause of this asymmetric EKE tendency is attributed to the spatial phase relation among the ISO vorticity, eddy structure, and EKE. The southwest–northeast-tilted synoptic disturbances interacting with cyclonic (anticyclonic) vorticity of ISO lead to a positive (negative) EKE tendency in the northwest region of the maximum EKE center. The genesis number and location and intensification rate of tropical cyclones in the western North Pacific are closely related to the barotropic energy conversion. The enhanced barotropic energy conversion favors the generation and development of synoptic seed disturbances, some of which eventually grow into tropical cyclones.

2014 ◽  
Vol 27 (10) ◽  
pp. 3750-3766 ◽  
Author(s):  
Chih-Hua Tsou ◽  
Huang-Hsiung Hsu ◽  
Pang-Chi Hsu

Abstract This study formulates a synoptic-scale eddy (SSE) kinetic energy equation by partitioning the original field into seasonal mean circulation, intraseasonal oscillation (ISO), and SSEs to examine the multiscale interactions over the western North Pacific (WNP) in autumn. In addition, the relative contribution of synoptic-mean and synoptic-ISO interactions to SSE kinetic energy was quantitatively estimated by further separating barotropic energy conversion (CK) into synoptic-mean barotropic energy conversion (CKS−M) and synoptic-ISO barotropic energy conversion (CKS−ISO) components. The development of tropical SSE in the lower troposphere is mainly attributed to CK associated with multiscale interactions. Mean cyclonic circulation in the lower troposphere consistently provides kinetic energy to SSEs (CKS−M > 0) during the ISO westerly and easterly phases. However, CKS−ISO during the ISO westerly and easterly phases differs considerably. During the ISO westerly phase, the enhanced ISO cyclonic flow converts energy to SSEs (CKS−ISO > 0). The magnitude of the downscale energy conversion from mean and ISO to SSEs is related to the strength of the SSEs. During the ISO westerly phase, a stronger SSE extracts more kinetic energy from mean and ISO circulation. This positive feedback between SSE-mean and SSE–ISO interactions causes further strengthening of SSEs during the ISO westerly phase. By contrast, upscale energy conversion from SSEs to ISO anticyclonic flow (CKS−ISO < 0) was observed during the ISO easterly phase. The weaker SSE activity during the ISO easterly phase occurred because the mean circulation provides less energy to SSEs and, at the same time, SSEs lose energy to ISO during the ISO easterly phase. The two-way interaction between the ISO and SSEs has considerable effects on the development of tropical SSEs over the WNP in autumn.


2019 ◽  
Vol 32 (19) ◽  
pp. 6645-6661 ◽  
Author(s):  
Xi Cao ◽  
Renguang Wu ◽  
Mingyu Bi ◽  
Xiaoqing Lan ◽  
Yifeng Dai ◽  
...  

Abstract The present study investigates relative contributions of interannual, intraseasonal, and synoptic variations of environmental factors to tropical cyclone (TC) genesis over the northern tropical Atlantic (NTA) during July–October. Analysis shows that convection, lower-level vorticity, and midlevel specific humidity contribute to TC genesis through intraseasonal and synoptic variations with a larger contribution of the latter. The relative contribution of three components of vertical wind shear depends largely on its magnitude. The contribution of sea surface temperature (SST) to TC genesis is mainly due to the interannual component when total SST is above 27.5°C. The barotropic energy for the development of synoptic-scale disturbances comes mainly from climatological mean flows and intraseasonal wind variations. The proportion of contribution between synoptic and intraseasonal variations of convection, relative vorticity, and specific humidity is larger over the eastern NTA than over the western NTA. The barotropic energy conversion has a larger part related to climatological mean flows and intraseasonal wind variations over the eastern and western NTA, respectively. There are notable differences between the NTA and the western North Pacific (WNP). One is that the relative contribution of synoptic variations of convection, relative vorticity, and specific humidity is larger over the NTA, whereas that of intraseasonal variations is larger over the WNP. The other is that the barotropic energy conversion related to climatological mean flows and intraseasonal wind variations is comparable over the NTA, whereas that related to climatological mean flows is larger over the WNP.


2020 ◽  
Vol 142 (1-2) ◽  
pp. 393-406
Author(s):  
Zhongkai Bo ◽  
Xiangwen Liu ◽  
Weizong Gu ◽  
Anning Huang ◽  
Yongjie Fang ◽  
...  

Abstract In this paper, we evaluate the capability of the Beijing Climate Center Climate System Model (BCC-CSM) in simulating and forecasting the boreal summer intraseasonal oscillation (BSISO), using its simulation and sub-seasonal to seasonal (S2S) hindcast results. Results show that the model can generally simulate the spatial structure of the BSISO, but give relatively weaker strength, shorter period, and faster transition of BSISO phases when compared with the observations. This partially limits the model’s capability in forecasting the BSISO, with a useful skill of only 9 days. Two sets of hindcast experiments with improved atmospheric and atmosphere/ocean initial conditions (referred to as EXP1 and EXP2, respectively) are conducted to improve the BSISO forecast. The BSISO forecast skill is increased by 2 days with the optimization of atmospheric initial conditions only (EXP1), and is further increased by 1 day with the optimization of both atmospheric and oceanic initial conditions (EXP2). These changes lead to a final skill of 12 days, which is comparable to the skills of most models participated in the S2S Prediction Project. In EXP1 and EXP2, the BSISO forecast skills are improved for most initial phases, especially phases 1 and 2, denoting a better description for BSISO propagation from the tropical Indian Ocean to the western North Pacific. However, the skill is considerably low and insensitive to initial conditions for initial phase 6 and target phase 3, corresponding to the BSISO convection’s active-to-break transition over the western North Pacific and BSISO convection’s break-to-active transition over the tropical Indian Ocean and Maritime Continent. This prediction barrier also exists in many forecast models of the S2S Prediction Project. Our hindcast experiments with different initial conditions indicate that the remarkable model errors over the Maritime Continent and subtropical western North Pacific may largely account for the prediction barrier.


2012 ◽  
Vol 25 (24) ◽  
pp. 8591-8610 ◽  
Author(s):  
Ken-Chung Ko ◽  
Huang-Hsiung Hsu ◽  
Chia Chou

Abstract Propagation and maintenance mechanisms of the tropical cyclone/submonthly wave pattern in the western North Pacific are explored. The wave pattern exhibited an equivalent barotropic structure with maximum vorticity and kinetic energy in the lower troposphere and propagated northwestward in the Philippine Sea in the intraseasonal oscillation (ISO) westerly phase and north-northeastward near the East Asian coast in the easterly phase. The mean flow advection played a dominant role in the propagation in both phases. Barotropic energy conversion is the dominant process in maintaining the kinetic energy of the pattern. The wave pattern tended to occur in the confluent zone between the monsoon trough and the anticyclonic ridge, where the kinetic energy could be efficiently extracted from the westerly mean flow associated with the monsoon trough. The individual circulation circuit embedded in the pattern was oriented northeast–southwest (east–west) to have optimal growth and propagation during the ISO westerly (easterly) phase. When tropical cyclones (TCs) developed in a development-favorable background flow provided by the submonthly wave pattern, they in turn enhanced the amplitudes of the vorticity and kinetic energy of the submonthly wave pattern by more than 50% and helped extract significantly more energy from the background ISO circulation. This TC feedback was much more significant in the ISO westerly phase because of the stronger clustering effect on TCs by the enhanced monsoon trough.


2011 ◽  
Vol 24 (3) ◽  
pp. 942-961 ◽  
Author(s):  
Pang-Chi Hsu ◽  
Tim Li

Abstract The interactions between the boreal summer intraseasonal oscillation (ISO) and synoptic-scale variability (SSV) are investigated by diagnosing the atmospheric apparent heat source (Q1), apparent moisture sink (Q2), and eddy momentum transport. It is found that the synoptic Q1 and Q2 heating (cooling) anomalies are in phase with cyclonic (anticyclonic) vorticity disturbances, aligned in a southeast–northwest-oriented wave train pattern over the western North Pacific (WNP). The wave train is well organized and strengthened (loosely organized and weakened) during the ISO active (suppressed) phase. The nonlinearly rectified Q1 and Q2 fields due to the eddy–mean flow interaction account for 10%–30% of the total intraseasonal Q1 and Q2 variabilities over the WNP. During the ISO active (suppressed) phase, the nonlinearly rectified intraseasonal Q1 and Q2 heating (cooling) appear to the northwest of the ISO enhanced (suppressed) convection center, favoring the northwestward propagation of the ISO. A diagnosis of the zonal momentum budget shows that the eddy momentum flux convergence forces an intraseasonal westerly (easterly) tendency to the north of the ISO westerly (easterly) center during the ISO active (suppressed) phase. As a result, the eddy momentum transport may contribute to the northward propagation of the boreal summer ISO over the WNP.


Sign in / Sign up

Export Citation Format

Share Document