Changes in extended boreal summer tropical cyclogenesis associated with large-scale flow patterns over the western North Pacific in response to the global warming hiatus

2020 ◽  
Author(s):  
Kai Zhao ◽  
Haikun Zhao ◽  
Graciela B. Raga ◽  
Ryuji Yoshida ◽  
Weiqiang Wang ◽  
...  
2018 ◽  
Vol 146 (5) ◽  
pp. 1283-1301 ◽  
Author(s):  
Jacopo Riboldi ◽  
Matthias Röthlisberger ◽  
Christian M. Grams

Abstract The interaction of recurving tropical cyclones (TCs) with midlatitude Rossby waves during extratropical transition (ET) can significantly alter the midlatitude flow configuration. This study provides a climatological investigation of Rossby wave initiation (RWI) by transitioning TCs in the specific configuration of an initially zonal midlatitude waveguide and elucidates physical processes governing ab initio flow amplification during ET. Recurving TCs interacting with a zonally oriented waveguide in the western North Pacific (WNP) basin from 1979 to 2013 are categorized into cases initiating Rossby waves (TC-RWI) or not (TC-noRWI). Interactions with a zonally oriented waveguide occurred for 22.7% of the recurving TCs, and one-third of these resulted in TC-RWI. In the presence of a TC, the probability of RWI on a zonally oriented waveguide is 3 times larger than in situations without a TC. The occurrence of TC-RWI exhibits a seasonality and is relatively more common during boreal summer than in autumn. We further reveal that a strong preexisting upper-level jet stream, embedded in a deformative large-scale flow pattern, hinders TC-RWI as air from the diabatic outflow of the TC is rapidly advected downstream and does not lead to strong ridge building. In contrast, an enhanced monsoon trough favors TC-RWI as the poleward moisture transport strengthens diabatic outflow and leads to strong ridge building during ET. Thus, we conclude that TC-related ab initio flow amplification over the WNP is governed by characteristics of the large-scale flow more so than by characteristics of the recurving TC.


2020 ◽  
Vol 98 (1) ◽  
pp. 61-72
Author(s):  
Hironori Fudeyasu ◽  
Ryuji Yoshida ◽  
Munehiko Yamaguchi ◽  
Hisaki Eito ◽  
Chiashi Muroi ◽  
...  

2007 ◽  
Vol 135 (3) ◽  
pp. 1110-1127 ◽  
Author(s):  
Justin D. Ventham ◽  
Bin Wang

Abstract NCEP–NCAR reanalysis data are used to identify large-scale environmental flow patterns around western North Pacific tropical storms with the goal of finding a signal for those most favorable for rapid intensification, based on the hypothesis that aspects of the horizontal flow influence tropical cyclone intensification at an early stage of development. Based on the finding that intensification rate is a strong function of initial intensity (Joint Typhoon Warning Center best track), very rapid, rapid, and slow 24-h intensification periods from a weak tropical storm stage (35 kt) are defined. By using composite analysis and scalar EOF analysis of the zonal wind around these subsets, a form of the lower-level (850 mb) combined monsoon confluence–shearline pattern is found to occur dominantly for the very rapid cases. Based on the strength of the signal, it may provide a new rapid intensification predictor for operational use. At 200 mb the importance of the location of the tropical storm under a region of flow splitting into the midlatitude westerlies to the north and the subequatorial trough to the south is identified as a common criterion for the onset of rapid intensification. Cases in which interactions with upper-level troughs occurred, prior to and during slow and rapid intensification, are studied and strong similarities to prior Atlantic studies are found.


2004 ◽  
Vol 17 (23) ◽  
pp. 4590-4602 ◽  
Author(s):  
Johnny C. L. Chan ◽  
Kin Sik Liu

Abstract Based on results from climate model simulations, many researchers have suggested that because of global warming, the sea surface temperature (SST) will likely increase, which will then lead to an increase in the intensity of tropical cyclones (TCs). This paper reports results of a study of the relationship between SST and observed typhoon activity (which is used as a proxy for the intensity of TCs averaged over a season) over the western North Pacific (WNP) for the past 40 yr. The average typhoon activity over a season is found to have no significant relationship with SST in the WNP but increases when the SST over the equatorial eastern Pacific Ocean is above normal. The mean annual typhoon activity is generally higher (lower) during an El Niño (La Niña) year. Such interannual variations of typhoon activity appear to be largely constrained by the large-scale atmospheric factors that are closely related to the El Niño–Southern Oscillation (ENSO) phenomenon. These large-scale dynamic and thermodynamic factors include low-level relative vorticity, vertical wind shear, and moist static energy. Such results are shown to be physically consistent with one another and with those from previous studies on the interannual variations of TC activity. The results emphasize the danger of drawing conclusions about future TC intensity based on current climate model simulations that are not designed to make such predictions.


2015 ◽  
Vol 54 (7) ◽  
pp. 1413-1429 ◽  
Author(s):  
Haikun Zhao ◽  
Ryuji Yoshida ◽  
G. B. Raga

AbstractThe intraseasonal variability of tropical cyclogenesis in the western North Pacific (WNP) basin is explored in this study. The relation of cyclogenesis in each of the five large-scale patterns identified in recent work by Yoshida and Ishikawa is associated with the Madden–Julian oscillation (MJO). Confirming previous results, more events of cyclogenesis are found during the active MJO phase in the WNP. Furthermore, results indicate that most of the tropical cyclogenesis is associated with the monsoon shear line large-scale pattern during the active phase. The genesis potential index (GPI) and its individual components are used to evaluate the environmental factors that most contribute toward cyclogenesis under the different phases of the MJO. GPI exhibits a large positive anomaly during the active phase of the MJO, and such an anomaly is spatially correlated with the events of cyclogenesis. The analysis of each factor indicates that low-level relative vorticity and midlevel relative humidity are the two dominant contributors to the MJO-composited GPI anomalies. The positive GPI anomalies during the active phase are partially offset by the negative contributions from vertical wind shear and potential intensity. This is valid for all five large-scale patterns. It is noteworthy that the easterly wave (EW) large-scale pattern, while exhibiting the same influence of relative vorticity and midlevel humidity contributing toward positive GPI anomalies, presents slightly more cyclogenesis events under the inactive phase of the MJO. This unexpected result suggests that other factors not included in the definition of the GPI and/or changes in environmental flows on other time scales contribute to the tropical cyclogenesis associated with the EW large-scale pattern.


2020 ◽  
Vol 33 (21) ◽  
pp. 9129-9143
Author(s):  
Jun Gao ◽  
Haikun Zhao ◽  
Philip J. Klotzbach ◽  
Chao Wang ◽  
Graciela B. Raga ◽  
...  

AbstractThis study examines the possible impact of tropical Indian Ocean (TIO) sea surface temperature anomalies (SSTAs) on the proportion of rapidly intensifying tropical cyclones (PRITC) over the western North Pacific (WNP) during the extended boreal summer (July–November). There is a robust interannual association (r = 0.46) between TIO SSTAs and WNP PRITC during 1979–2018. Composite analyses between years with warm and cold TIO SSTAs confirm a significant impact of TIO SSTA on WNP PRITC, with PRITC over the WNP basin being 50% during years with warm TIO SSTAs and 37% during years with cold TIO SSTAs. Tropical cyclone heat potential appears to be one of the most important factors in modulating the interannual change of PRITC over the WNP with a secondary role from midlevel moisture changes. Interannual changes in these large-scale factors respond to SSTA differences characterized by a tropics-wide warming, implying a possible global warming amplification on WNP PRITC. The possible footprint of global warming amplification of the TIO is deduced from 1) a significant correlation between TIO SSTAs and global mean SST (GMSST) and a significant linear increasing trend of GMSST and TIO SSTAs, and 2) an accompanying small difference of PRITC (~8%) between years with detrended warm and cold TIO SSTAs compared to the difference of PRITC (~13%) between years with nondetrended warm and cold TIO SSTAs. Global warming may contribute to increased TCHP, which is favorable for rapid intensification, but increased vertical wind shear is unfavorable for TC genesis, thus amplifying WNP PRITC.


2014 ◽  
Vol 71 (12) ◽  
pp. 4639-4660 ◽  
Author(s):  
Xi Cao ◽  
Tim Li ◽  
Melinda Peng ◽  
Wen Chen ◽  
Guanghua Chen

Abstract The effects of intraseasonal oscillation (ISO) of the western North Pacific (WNP) monsoon trough on tropical cyclone (TC) formation were investigated using the Advanced Research Weather Research and Forecasting (ARW) Model. A weak vortex was specified initially and inserted into the background fields containing climatological-mean anomalies associated with active and inactive phases of monsoon trough ISOs. The diagnosis of simulations showed that monsoon trough ISO can modulate TC development through both dynamic and thermodynamic processes. The dynamic impact is attributed to the lower–midtropospheric large-scale vorticity associated with monsoon trough ISO. Interactions between cyclonic vorticity in the lower middle troposphere during the active ISO phase and a vortex lead to the generation of vortex-scale outflow at the midlevel, which promotes the upward penetration of friction-induced ascending motion and thus upward moisture transport. In addition, the low-level convergence associated with active ISO also helps the upward moisture transport. Both processes contribute to stronger diabatic heating and thus promote a positive convection–circulation–moisture feedback. On the other hand, the large-scale flow associated with inactive ISO suppresses upward motion near the core by inducing the midlevel inflow and the divergence forcing within the boundary layer, both inhibiting TC development. The thermodynamic impact comes from greater background specific humidity associated with active ISO that allows a stronger diabatic heating. Experiments that separated the dynamic and thermodynamic impacts of the ISO showed that the thermodynamic anomaly from active ISO contributes more to TC development, while the dynamic anomalies from inactive ISO can inhibit vortex development completely.


2019 ◽  
Vol 32 (23) ◽  
pp. 8167-8179 ◽  
Author(s):  
Haikun Zhao ◽  
Jie Zhang ◽  
Philip J. Klotzbach ◽  
Shaohua Chen

Abstract This study examines interdecadal changes in the interannual relationship between the extended boreal summer (May–November) tropical cyclogenesis (TCG) latitude and longitude over the western North Pacific Ocean (WNP) during 1979–2016. Increasing covariability of WNP TCG latitude and longitude is observed since 1998, which is found to be closely linked to shifting ENSO conditions and a tropical Pacific climate regime shift. Accompanied by an increasing occurrence in central Pacific (CP) ENSO events during recent decades, there has been a more consistent northwestward or southeastward shift of WNP TCG location since 1998. These coherent latitude and longitude shifts were generally not evident during 1979–97, a period characterized by a more conventional eastern Pacific (EP) ENSO pattern. Our statistical results show a robust relationship between TCG latitude and the Hadley circulation and between longitude and the Walker circulation during the period prior to and since the regime shift, and a possible physical explanation for the recent increased covariability of TCG latitude and longitude is given. During 1998–2016, there is a significant association of CP ENSO events with the intensity of both the Hadley and Walker circulations that likely caused the recent increase in the covariability of TCG latitude and longitude. However, the strong association of EP ENSO events with the intensity of the Hadley circulation but not with the Walker circulation during 1979–97 weakened the covariability of TCG latitude and longitude. In addition, changes in tropical Indian Ocean sea surface temperatures appear to also importantly contribute to the recent increased covariability of WNP TCG location.


2018 ◽  
Vol 31 (22) ◽  
pp. 9175-9191 ◽  
Author(s):  
Haikun Zhao ◽  
Shaohua Chen ◽  
Philip J. Klotzbach ◽  
G. B. Raga

Tropical cloud clusters (TCCs) are traditionally viewed as precursors of tropical cyclone (TC) genesis. Most studies have focused on the impact of the extended boreal summer intraseasonal oscillation (ISO) on TC activity over the western North Pacific (WNP), while the modulation of the ISO on WNP TCC genesis productivity (TCCGP), that is, the ratio of TC to TCC counts, has been investigated much less frequently. This study suggests that the extended boreal summer ISO modulates WNP TCCGP, with higher (lower) TCCGP during convectively active (inactive) ISO phases. Changes in TCCGP are found to be closely associated with changes of large-scale environmental factors. During the convectively active ISO phase, significantly increased TCCGP is associated with strengthened low-level cyclonic circulation anomalies and increased midlevel relative humidity anomalies over the WNP basin. The genesis potential index (GPI) contains several large-scale environmental variables demonstrated to relate to TCs and TCCs. The GPI can adequately depict the ISO modulation of WNP TCCGP through its alterations of large-scale parameters. Low-level vorticity makes the largest contribution to the change of TCCGP with a secondary contribution from midlevel relative humidity. Interestingly, the nonlinear GPI terms make comparable contributions, which can be partly explained by the synoptic-scale wave activity associated with the ISO mode. Stronger (weaker) 3–8-day synoptic-scale wave train intensity and increased (decreased) low-level eddy kinetic energy are found to be associated with the enhanced (weakened) monsoon circulation over the WNP basin during convectively active (inactive) ISO phases.


Sign in / Sign up

Export Citation Format

Share Document