Monomer methylmethacrylate (MMA) incorporated hybrid low-k thin films

2013 ◽  
Vol 9 (6) ◽  
pp. 723-728 ◽  
Author(s):  
Bhavana N. Joshi ◽  
A. M. Mahajan
Keyword(s):  
2018 ◽  
Author(s):  
K. A. Rubin ◽  
W. Jolley ◽  
Y. Yang

Abstract Scanning Microwave Impedance Microscopy (sMIM) can be used to characterize dielectric thin films and to quantitatively discern film thickness differences. FEM modeling of the sMIM response provides understanding of how to connect the measured sMIM signals to the underlying properties of the dielectric film and its substrate. Modeling shows that sMIM can be used to characterize a range of dielectric film thicknesses spanning both low-k and medium-k dielectric constants. A model system consisting of SiO2 thin films of various thickness on silicon substrates is used to illustrate the technique experimentally.


2006 ◽  
Vol 914 ◽  
Author(s):  
George Andrew Antonelli ◽  
Tran M. Phung ◽  
Clay D. Mortensen ◽  
David Johnson ◽  
Michael D. Goodner ◽  
...  

AbstractThe electrical and mechanical properties of low-k dielectric materials have received a great deal of attention in recent years; however, measurements of thermal properties such as the coefficient of thermal expansion remain minimal. This absence of data is due in part to the limited number of experimental techniques capable of measuring this parameter. Even when data does exist, it has generally not been collected on samples of a thickness relevant to current and future integrated processes. We present a procedure for using x-ray reflectivity to measure the coefficient of thermal expansion of sub-micron dielectric thin films. In particular, we elucidate the thin film mechanics required to extract this parameter for a supported film as opposed to a free-standing film. Results of measurements for a series of plasma-enhanced chemical vapor deposited and spin-on low-k dielectric thin films will be provided and compared.


2008 ◽  
Vol 53 (3) ◽  
pp. 1634-1637 ◽  
Author(s):  
S.-J. Cho ◽  
I.-S. Bae ◽  
J.-H. Boo ◽  
Y. S. Park ◽  
B. Hong

2005 ◽  
Vol 82 (3-4) ◽  
pp. 368-373 ◽  
Author(s):  
N. Chérault ◽  
G. Carlotti ◽  
N. Casanova ◽  
P. Gergaud ◽  
C. Goldberg ◽  
...  

2003 ◽  
Vol 795 ◽  
Author(s):  
Y. Lin ◽  
J. J. Vlassak ◽  
T. Y. Tsui ◽  
A. J. McKerrow

ABSTRACTUnderstanding subcritical fracture of low-k dielectric materials and barrier thin films in buffered solutions of different pH value is of both technical and scientific importance. Subcritical delamination of dielectric and metal barrier films from low-k organosilicate glass (OSG) films in pH buffer solutions was studied in this work. Crack path and subcritical fracture behavior of OSG depends on the choice of barrier layers. For the OSG/TaN system, fracture takes place in the OSG layer near the interface, while in OSG/SiNx system, delamination occurs at the interface. Delamination behavior of both systems is well described by a hyperbolic sine model that had been developed previously based on a chemical reaction controlled fracture process at the crack tip. The threshold toughness of both systems decreases linearly with increasing pH value. The slopes of the reaction-controlled regime of the crack velocity curves for both systems are independent of pH as predicted by the model. Near transport-controlled regime behavior was observed in OSG/TaN system.


2003 ◽  
Vol 766 ◽  
Author(s):  
Jingyu Hyeon-Lee ◽  
Jihoon Rhee ◽  
Jungbae Kim ◽  
Jin-Heong Yim ◽  
Seok Chang

AbstractLow dielectric fluoro-containing poly(silsesquioxanes) (PSSQs) have been synthesized using trifluoropropyl trimethoxysilane (TFPTMS), methyl trimethoxysilane (MTMS), and 2, 4, 6, 8-tetramethyl-2, 4, 6, 8-tetra(trimethoxysilylethyl) cyclotetrasiloxane. The properties of fluorocontaining PSSQs based thin films were studied by electrical, mechanical, and structural characterization. Film was spun on a silicon substrate, baked at 150°C and 250°C for 1 minute, respectively, and cured in the furnace at 420°C for 1 hour under vacuum condition. Thermally decomposable trifluoropropyl groups of the fluoro-containing PSSQ were served as a pore generator and partially contributed to lower a dielectric constant. â-cyclodextrin (CD) was also employed as a pore generator. The concentration of the pore generator in the film was varied from 0 to 30 %. The dielectric constants of the porous PSSQ films were found to be in the range of 2.7 – 1.9 (at 100 kHz). Hardness and Young's modulus of the films were measured by nano-indentation. The elastic modulus and hardness of the porous films were well correlated with the concentration of the pore generators. Positronium Annihilation Lifetime Spectroscopy (PALS) was employed to characterize a pore size of the porous fluoro-containing PSSQ film. The pore size of the film was less than 2.2 nm. The nanoporous films showed quite promising properties for commercial application.


Sign in / Sign up

Export Citation Format

Share Document