Studies of the Coefficient of Thermal Expansion of Low-k ILD Materials by X-Ray Reflectivity

2006 ◽  
Vol 914 ◽  
Author(s):  
George Andrew Antonelli ◽  
Tran M. Phung ◽  
Clay D. Mortensen ◽  
David Johnson ◽  
Michael D. Goodner ◽  
...  

AbstractThe electrical and mechanical properties of low-k dielectric materials have received a great deal of attention in recent years; however, measurements of thermal properties such as the coefficient of thermal expansion remain minimal. This absence of data is due in part to the limited number of experimental techniques capable of measuring this parameter. Even when data does exist, it has generally not been collected on samples of a thickness relevant to current and future integrated processes. We present a procedure for using x-ray reflectivity to measure the coefficient of thermal expansion of sub-micron dielectric thin films. In particular, we elucidate the thin film mechanics required to extract this parameter for a supported film as opposed to a free-standing film. Results of measurements for a series of plasma-enhanced chemical vapor deposited and spin-on low-k dielectric thin films will be provided and compared.

2003 ◽  
Vol 82 (7) ◽  
pp. 1084-1086 ◽  
Author(s):  
Hae-Jeong Lee ◽  
Eric K. Lin ◽  
Barry J. Bauer ◽  
Wen-li Wu ◽  
Byung Keun Hwang ◽  
...  

2000 ◽  
Vol 612 ◽  
Author(s):  
Eric K. Lin ◽  
Wen-li Wu ◽  
Changming Jin ◽  
Jeffrey T. Wetzel

AbstractHigh-resolution X-ray reflectivity and small angle neutron scattering measurements are used as complementary techniques to characterize the structure and properties of porous thin films for use as low-k interlevel dielectric (ILD) materials. With the addition of elemental composition information, the average pore size, porosity, pore connectivity, matrix density, average film density, film thickness, coefficient of thermal expansion, and moisture uptake of porous thin films are determined. Examples from different classes of materials and two analysis methods for small angle neutron scattering data are presented and discussed.


1996 ◽  
Vol 423 ◽  
Author(s):  
Hassan Golestanian ◽  
S. Mirzakuchaki ◽  
E. J. Charlson ◽  
T. Stacy ◽  
E. M. Charlson

AbstractHot-filament chemical vapor deposited (HFCVD) boron doped polycrystalline diamond thin films having low volume resistivity were grown on sapphire. The films were characterized using scanning electron microscope (SEM), X-ray diffraction, and current-voltage measurements. SEM micrographs show good crystalline structure with preferred (100) orientation normal to the surface of the film. X-ray diffraction pattern revealed diamond characteristics with the four typical diamond peaks present. Finally, the obtained I-V characteristics indicated that the film's volume resistivity is at least two orders of magnitude lower than those of HFCVD polycrystalline diamond thin films grown on silicon under similar growth conditions.


1997 ◽  
Vol 505 ◽  
Author(s):  
G. Cornella ◽  
S. Lee ◽  
O. Kraft ◽  
W. D. Nix ◽  
J. C. Bravman

ABSTRACTX-ray strain analysis via Generalized Focusing Diffractometry (GFD) [1], and the concurrent need for accurate values of the unstrained lattice parameter, are discussed. A new method for determining the unstrained lattice parameter without knowledge of the elastic constants of the sample material is described. Stress measurements at varying temperatures, and extraction of the coefficient of thermal expansion from these measurements, are demonstrated for aluminum and gold films.


2005 ◽  
Vol 875 ◽  
Author(s):  
Kazuhiko Omote ◽  
Yoshiyasu Ito

AbstractBy introducing high precision sample alignment technique, repeatability of incident angle to the sample surface for x-ray reflectivity (XRR) measurement is achieved to be within 0.3 arcsec. As a result, film thickness and density are possible to be measured repeatability within 0.03% and density within 0.26%. This accuracy realized to detect very small change of thermal expansion of thin films. The coefficient of thermal expansions (CTE) for porous low-k films deposited by CVD method were measured up to 400°C. The obtained values are in the range from 40 to 80 x10-6 K-1 and they are very large compare to that of copper (16-20 x10-6 K-1).


Sign in / Sign up

Export Citation Format

Share Document