Effect of low temperature Ge seed layer and post thermal annealing on quality of Ge1− x Si x (0.05 ≤ x ≤ 0.1) graded buffer layers by UHV-CVD

2014 ◽  
Vol 10 (4) ◽  
pp. 759-762
Author(s):  
Chi-Lang Nguyen ◽  
Nguyen Hong Quan ◽  
Binh-Tinh Tran ◽  
Yung-Hsuan Su ◽  
Shih-Hsuan Tang ◽  
...  
2004 ◽  
Vol 831 ◽  
Author(s):  
Daisuke Muto ◽  
Ryotaro Yoneda ◽  
Hiroyuki Naoi ◽  
Masahito Kurouchi ◽  
Tsutomu Araki ◽  
...  

ABSTRACTThe effects of the nitridation process of (0001) sapphire on crystalline quality of InN were clearly demonstrated. The InN films were grown on NFM (nitrogen flux modulation) HT-InN or LT-InN buffer layers, which had been deposited on nitridated sapphire substrates. We found that low-temperature nitridation of sapphire is effective in improving the tilt distribution of InN films. Whereas the twist distribution remained narrow and almost constant, independent of nitridation conditions, when LT-InN buffer layers were used. The XRC-FWHM value of 54 arcsec for (0002) InN, the lowest reported to date, was achieved by using the LT-InN buffer layer and sapphire nitridation at 300°C for 3 hours.


2000 ◽  
Vol 639 ◽  
Author(s):  
Feng Yun ◽  
Michael A. Reshchikov ◽  
Paolo Visconti ◽  
Keith M. Jones ◽  
Dongfeng Wang ◽  
...  

ABSTRACTThe structural quality of the buffer layer juxtaposed to the substrate is pivotal in attaining high quality GaN layers. In MBE deposition, low temperature, medium temperature and high temperature AlN buffer layers are at the disposal of the grower. There are quite a few reports, some discussing the benefits of high temperature buffer layers and others doing the same for low temperature buffer layers. The reports emanate from different laboratories; and due to stringent parameter control required, it is difficult to compare one type of buffer with another. To gain some insight, we undertook an investigation wherein these varieties of buffer layers were grown on nitridated sapphire substrate under similar conditions for a comparative analysis. In addition to the single buffer layers of both GaN and AlN varieties, some combinations of stacked buffer layers, including cases where these buffer layers were separated by GaN layers, were employed. Structural analysis by high resolution X-ray diffractometry and topological analysis by AFM were carried out to assess the quality of the epilayers grown on these buffers. Hall measurements at room temperature were carried out to characterize the electrical transport properties.


1997 ◽  
Vol 82 (10) ◽  
pp. 4877-4882 ◽  
Author(s):  
L. Sugiura ◽  
K. Itaya ◽  
J. Nishio ◽  
H. Fujimoto ◽  
Y. Kokubun

2003 ◽  
Vol 0 (7) ◽  
pp. 2141-2144
Author(s):  
H. Murakami ◽  
N. Kawaguchi ◽  
Y. Kangawa ◽  
Y. Kumagai ◽  
A. Koukitu

1997 ◽  
Vol 468 ◽  
Author(s):  
J. T. Kobayashi ◽  
N. P. Kobayashi ◽  
P. D. Dapkus ◽  
X. Zhang ◽  
D. H. Rich

ABSTRACTA multilayer buffer layer approach to GaN growth has been developed in which the thermal desorption and mass transport of low temperature buffer layer are minimized by deposition of successive layers at increased temperatures. High quality GaN with featureless surface morphology has been grown on (0001) sapphire substrate by metalorganic chemical vapor deposition using this multilayer buffer layer approach. The lateral growth and coalescence of truncated 3D islands (TTIs) nucleated on low temperature buffer layers at the initial stage of overlayer growth is affected by the thickness of the final buffer layer on which nucleation of TTIs takes place. The effect of the thickness of this buffer layer on the quality of GaN is studied by using scanning electron microscopy, van der Pauw geometry Hall measurements and cathodoluminescence and an optimum value of 400Å is obtained.


2021 ◽  
pp. 174751982098472
Author(s):  
Lalmi Khier ◽  
Lakel Abdelghani ◽  
Belahssen Okba ◽  
Djamel Maouche ◽  
Lakel Said

Kaolin M1 and M2 studied by X-ray diffraction focus on the mullite phase, which is the main phase present in both products. The Williamson–Hall and Warren–Averbach methods for determining the crystallite size and microstrains of integral breadth β are calculated by the FullProf program. The integral breadth ( β) is a mixture resulting from the microstrains and size effect, so this should be taken into account during the calculation. The Williamson–Hall chart determines whether the sample is affected by grain size or microstrain. It appears very clearly that the principal phase of the various sintered kaolins, mullite, is free from internal microstrains. It is the case of the mixtures fritted at low temperature (1200 °C) during 1 h and also the case of the mixtures of the type chamotte cooks with 1350 °C during very long times (several weeks). This result is very significant as it gives an element of explanation to a very significant quality of mullite: its mechanical resistance during uses at high temperature remains.


Sign in / Sign up

Export Citation Format

Share Document