Initial Stages of MOCVD Growth of Gallium Nitride Using a Multi-Step Growth Approach

1997 ◽  
Vol 468 ◽  
Author(s):  
J. T. Kobayashi ◽  
N. P. Kobayashi ◽  
P. D. Dapkus ◽  
X. Zhang ◽  
D. H. Rich

ABSTRACTA multilayer buffer layer approach to GaN growth has been developed in which the thermal desorption and mass transport of low temperature buffer layer are minimized by deposition of successive layers at increased temperatures. High quality GaN with featureless surface morphology has been grown on (0001) sapphire substrate by metalorganic chemical vapor deposition using this multilayer buffer layer approach. The lateral growth and coalescence of truncated 3D islands (TTIs) nucleated on low temperature buffer layers at the initial stage of overlayer growth is affected by the thickness of the final buffer layer on which nucleation of TTIs takes place. The effect of the thickness of this buffer layer on the quality of GaN is studied by using scanning electron microscopy, van der Pauw geometry Hall measurements and cathodoluminescence and an optimum value of 400Å is obtained.

2004 ◽  
Vol 831 ◽  
Author(s):  
Daisuke Muto ◽  
Ryotaro Yoneda ◽  
Hiroyuki Naoi ◽  
Masahito Kurouchi ◽  
Tsutomu Araki ◽  
...  

ABSTRACTThe effects of the nitridation process of (0001) sapphire on crystalline quality of InN were clearly demonstrated. The InN films were grown on NFM (nitrogen flux modulation) HT-InN or LT-InN buffer layers, which had been deposited on nitridated sapphire substrates. We found that low-temperature nitridation of sapphire is effective in improving the tilt distribution of InN films. Whereas the twist distribution remained narrow and almost constant, independent of nitridation conditions, when LT-InN buffer layers were used. The XRC-FWHM value of 54 arcsec for (0002) InN, the lowest reported to date, was achieved by using the LT-InN buffer layer and sapphire nitridation at 300°C for 3 hours.


1994 ◽  
Vol 341 ◽  
Author(s):  
B. K. Moon ◽  
H. Ishiwara

AbstractCrystalline strontium titanate (SrTiO3:STO) films were grown on Si(111) and Si(100) substrates using thin SrF2 and CaF2 buffer layers by two-step growth method. In all cases, fluoride buffer layers were effective in growing STO films on Si substrates, which is probably due to that fluoride buffer layers have excellent crystallinity and they can prevent formation of amorphous SiO2 layers on Si substrates at the initial stage of the STO deposition. It was found from X-ray diffraction and pole-figure measurements that (110)-oriented STO crystallites with three different positions to the substrate were grown on Si(111) substrates for both SrF2 and CaF2 buffer layers. In constrast, (100)-oriented STO films with 12-fold symmetry were grown on a SrF2/Si(100), and mixed (110)- and (100)-oriented STO crystallites were grown on a CaF2/Si(100) structure. It was concluded from these results that better crystallinity of STO films can be obtained on the SrF2 buffer layer in case of Si(111) and on the CaF2 buffer layer in case of Si(100). It was also found from I-V and C-V analyses that the STO films have good insulating and dielectric characteristics. For a SrTiO3 film on SrF2/Si(111) structure, the best values of breakdown field (at l.μA/cm2), resistivity (at IMV/cm) and dielectric constant were 2.3MV/cm, 8.2 × 1012 Ωcm and 72, respectively.


2015 ◽  
Vol 414 ◽  
pp. 15-20 ◽  
Author(s):  
Pornsiri Wanarattikan ◽  
Sakuntam Sanorpim ◽  
Somyod Denchitcharoen ◽  
Kenjiro Uesugi ◽  
Shigeyuki Kuboya ◽  
...  

2008 ◽  
Vol 1068 ◽  
Author(s):  
Ewa Dumiszewska ◽  
Wlodek Strupinski ◽  
Piotr Caban ◽  
Marek Wesolowski ◽  
Dariusz Lenkiewicz ◽  
...  

ABSTRACTThe influence of growth temperature on oxygen incorporation into GaN epitaxial layers was studied. GaN layers deposited at low temperatures were characterized by much higher oxygen concentration than those deposited at high temperature typically used for epitaxial growth. GaN buffer layers (HT GaN) about 1 μm thick were deposited on GaN nucleation layers (NL) with various thicknesses. The influence of NL thickness on crystalline quality and oxygen concentration of HT GaN layers were studied using RBS and SIMS. With increasing thickness of NL the crystalline quality of GaN buffer layers deteriorates and the oxygen concentration increases. It was observed that oxygen atoms incorporated at low temperature in NL diffuse into GaN buffer layer during high temperature growth as a consequence GaN NL is the source for unintentional oxygen doping.


1988 ◽  
Vol 126 ◽  
Author(s):  
M. Razeghi ◽  
M. Defour ◽  
F. Omnes ◽  
J. Nagle ◽  
P. Maurel ◽  
...  

ABSTRACTHigh quality GaAs and InP have been grown on silicon substrates, using low pressure metalorganic chemical vapor deposition technique. The growth temperature is 550°C and the growth rate 100 A/min.Photoluminescence, X-ray diffraction and electrochemical profiling verified the high quality of these layers. The use of superlattices as buffer layers, (GaAs/GaInP) in the case of GaAs/Si and (GaInAsP/InP) in the case of InP/Si, decreased the amount of misfit dislocations in the epitaxial layer. Carrier concentrations as low as 5.1015 cm−3 have been measured by electrochemical profiling.


2006 ◽  
Vol 916 ◽  
Author(s):  
Kazuhiro Ito ◽  
Yu Uchida ◽  
Sang-jin Lee ◽  
Susumu Tsukimoto ◽  
Yuhei Ikemoto ◽  
...  

AbstractAbout 20 years ago, the discovery of an AlN buffer layer lead to the breakthrough in epitaxial growth of GaN layers with mirror-like surface, using a metal organic chemical vapor deposition (MOCVD) technique on sapphire substrates. Since then, extensive efforts have been continued to develop a conductive buffer layer/substrate for MOCVD-grown GaN layers to improve light emission of GaN light-emitting diodes. In the present study, we produced MOCVD-grown, continuous, flat epitaxial GaN layers on nitrogen enriched TiN buffer layers with the upper limit of the nitrogen content of TiN deposited at room temperature (RT) on sapphire substrates. It was concluded that the nitrogen enrichment would reduce significantly the TiN/GaN interfacial energy. The RT deposition of the TiN buffer layers suppresses their grain growth during the nitrogen enrichment and the grain size refining must increase nucleation site of GaN. In addition, threading dislocation density in the GaN layers grown on TiN was much lower than that in the GaN layers grown on AlN.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000728-000733
Author(s):  
Piotr Mackowiak ◽  
Rachid Abdallah ◽  
Martin Wilke ◽  
Jash Patel ◽  
Huma Ashraf ◽  
...  

Abstract In the present work we investigate the quality of low temperature Plasma Enhanced Chemical Vapor Deposition (PECVD) and plasma treated Tetraethyl orthosilicate (TEOS)-based TSV-liner films. Different designs of Trough Silicon Via (TSV) Test structures with 10μm and 20μm width and a depth of 100μm have been fabricated. Two differently doped silicon substrates have been used – highly p-doped and moderately doped. The results for break-through, resistivity and capacitance for the 20μm structures show a better performance compared to the 10μm structures. This is mainly due to increased liner thickness in the reduced aspect ratio case. Lower interface traps and oxide charge densities have been observed in the C-V measurements results for the 10μm structures.


2014 ◽  
Vol 10 (4) ◽  
pp. 759-762
Author(s):  
Chi-Lang Nguyen ◽  
Nguyen Hong Quan ◽  
Binh-Tinh Tran ◽  
Yung-Hsuan Su ◽  
Shih-Hsuan Tang ◽  
...  

2001 ◽  
Vol 7 (S2) ◽  
pp. 330-331
Author(s):  
B. Shea ◽  
Q. Sun-Paduano ◽  
D. F. Bliss ◽  
M. C. Callahan ◽  
C. Sung

Interest in wide band gap III-V nitride semiconductor devices is increasing for optoelectronic and microelectronic device applications. to ensure the highest quality, TEM analysis can characterize the substrate and buffer layer interface. Measurements taken by TEM reveal the density of dislocations/cm2 and the orientation of Burger's vectors. This information allows for changes to be made in deposition rates, temperatures, gas flow rates, and other parameters during the processing.The GaN/sapphire samples grown at AFRL were produced in two consecutive steps, first to provide a thin buffer layer, and the other to grow a lum thick epitaxial film. Both growth steps were prepared using metallic organic chemical vapor deposition (MOCVD) in a vertical reactor. Buffer layers were prepared using a range of temperatures from 525 to 535°C and with a range of flow rates and pressures in order to optimize the nucleation conditions for the epitaxial films.


Sign in / Sign up

Export Citation Format

Share Document