Optimization of pyrolyzer design to produce maximum bio-oil from Saccharum ravannae L.: an integrated approach using experimental data and artificial intelligence

2019 ◽  
Vol 9 (4) ◽  
pp. 727-736
Author(s):  
Phani Gopal ◽  
Geeta Nadimpalli ◽  
Ruprekha Saikia ◽  
Hima Sankari ◽  
Raval Ratnam ◽  
...  
Volume 2 ◽  
2004 ◽  
Author(s):  
Renzo Capitani ◽  
Tommaso Iacomelli ◽  
Daniele G. Rosti ◽  
Pierluigi Tozzi

The Universita` degli Studi di Firenze joined the Formula Student competition (organised by SAE and IMechE) in 2002 competing in Class 3, the following year the first car was ready to compete in Class 1. In order to build this car, an integrated approach was adopted to obtain the best solution in every aspect. The purpose of the design was to optimise the car handling, fulfilling the Formula SAE rules. All the design phases were based on the Design for X approach, with the aim to optimise all the aspects of the Formula SAE project, like performance, design and cost. A Design for Manufacturing approach was added to the FEA to design all the components, like uprights and wheel spindles, in order to simplify the CNC machining. The suspensions layout was defined using a recursive method based on the Multibody Simulation and the components design. Some experimentations were conducted to verify the simulations. The experimental data were used to start the redesign, to improve the performance of the new car that will compete in the 2004 events.


Author(s):  
Natalya L. Gagulina ◽  

The article analyzes the institutional provision of the regulatory functions of the state in such areas as artificial intelligence and robotics. The analysis is based on the Concept of the development of regulation of relations in the field of artificial intelligence and robotics technologies until 2024. Among the problematic areas of regulation are the restriction of competition, the loss of flexibility in economic relations and the market disequilibrium. It is shown that the solution of these problems requires an integrated approach. So, to implement the concept of “smart city”, it is necessary not only to weaken or remove regulatory barriers, but also to use additional tools that have already applied in the world practice. An opportunity of applying of theoretical and methodological base of quality economics is considered. The solution to a significant part of the problems of digitalization of the region’s economy is the use in the management of the development of the “smart city” the international standard “Sustainable cities and Communities – Indicators for smart cities”.


2018 ◽  
Vol 197 ◽  
pp. 09005
Author(s):  
Bregas Siswahjono Tatag Sembodo ◽  
Hary Sulistyo ◽  
Wahyudi Budi Sediawan ◽  
Mohammad Fahrurrozi

Corncobs are potentially processed into bio-oil through thermochemical liquefaction processes. It is difficult to construct kinetics models based on the compounds involved in the reaction. It would be made four kinetic models based on four reaction products, i.e., solids, bio-oil, gas and volatile products. The purposes of the study were to seek kinetics model of thermochemical liquefaction of corncobs in ethanol-water solution and to study the effect of ethanol concentration. The experiment of liquefaction processes of corncobs in ethanol-water solution using sodium carbonate catalyst was performed in the 150 ml autoclave equipped with a magnetic stirrer in the temperature up to 280°C. Four kinetic models were applied to predict the yield of four reaction product lumps. The calculation results were compared to the experimental data. Compared to the others, model 4 was the most realistic and closely matching to the experimental data. In model 4 the reaction mechanism was assumed that biomass (corncobs) first decomposed into bio-oil, followed by decomposition of bio-oil into volatile products reversibly and, finally, volatile products decomposed into gaseous products. The yield of bio-oil increased from 42.05% to 54.93% by increasing to ethanol concentration of 0% to 40%.


2010 ◽  
Vol 46 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Y. Du ◽  
J. Wang ◽  
Y.F. Ouyang ◽  
L.J. Zhang ◽  
Z.H. Yuan ◽  
...  

An integrated approach of experiment and theoretical computation to acquire enthalpies of formation for ternary compounds is described. The enthalpies of formation (DHf ) for Al71Fe19Si10 and Al31Mn6Ni2 are measured via a calorimeter. Miedema model, CALPHAD and first-principles method are employed to calculate DHf for the above compounds and several Al-based ternary compounds. It is found that first-principles generated data yield good agreements with experimental values and thus can be used as key 'experimental data', which are needed for CALPHAD approach.


2021 ◽  
Vol 4 (2) ◽  
pp. 125-144
Author(s):  
Natalia Mironova

The digital transformation of processes and control systems in the last decade has been accompanied by the introduction of artificial intelligence technologies. The purpose of this study is to investigate the conditions for the safe use of intelligent technologies and tools for managing social infrastructure. The research methodology bases on an integrated approach, comparative analysis, and logical synthesis. The author suggests a philosophical analysis of existential risks of intellectual automation of social management and the mechanisms of their implementation, and also investigates the conditions for a safer use of technologies for intelligent automation of socially significant decisions. Generalized measures and search directions are proposed to reduce a number of risks associated with intelligent automation of control.


1989 ◽  
Vol 264 (1) ◽  
pp. 175-184 ◽  
Author(s):  
L Garfinkel ◽  
D M Cohen ◽  
V W Soo ◽  
D Garfinkel ◽  
C A Kulikowski

We have developed a computer method based on artificial-intelligence techniques for qualitatively analysing steady-state initial-velocity enzyme kinetic data. We have applied our system to experiments on hexokinase from a variety of sources: yeast, ascites and muscle. Our system accepts qualitative stylized descriptions of experimental data, infers constraints from the observed data behaviour and then compares the experimentally inferred constraints with corresponding theoretical model-based constraints. It is desirable to have large data sets which include the results of a variety of experiments. Human intervention is needed to interpret non-kinetic information, differences in conditions, etc. Different strategies were used by the several experimenters whose data was studied to formulate mechanisms for their enzyme preparations, including different methods (product inhibitors or alternate substrates), different experimental protocols (monitoring enzyme activity differently), or different experimental conditions (temperature, pH or ionic strength). The different ordered and rapid-equilibrium mechanisms proposed by these experimenters were generally consistent with their data. On comparing the constraints derived from the several experimental data sets, they are found to be in much less disagreement than the mechanisms published, and some of the disagreement can be ascribed to different experimental conditions (especially ionic strength).


Author(s):  
Zheng Yin ◽  
Stephen T. C. Wong

Drug repositioning aims to reuse existing drugs, shelved drugs, or drug candidates that failed clinical trials for other medical indications. Its attraction is sprung from the reduction in risk associated with safety testing of new medications and the time to get a known drug into the clinics. Artificial Intelligence (AI) has been recently pursued to speed up drug repositioning and discovery. The essence of AI in drug repositioning is to unify the knowledge and actions, i.e. incorporating real-world and experimental data to map out the best way forward to identify effective therapeutics against a disease. In this review, we share positive expectations for the evolution of AI and drug repositioning and summarize the role of AI in several methods of drug repositioning.


Author(s):  
Kenji Tamura ◽  
◽  
Takashi Torii ◽  

These days, artificial intelligence (AI) has been used in game AI. Additionally, video game AI is studied actively in late years, for example, application of commercial game or competition etc. In many video games of recent years, real-time action and non-player characters have been required to attract players. This paper describes how to develop a ghost team controller using evolutionary system to play the video game, Ms Pac-Man. Ms Pac-Man has been used as a testbed of AI, especially multi-agent system. We propose a method to generate the ghost team controller with Grammatical Evolution. In case of developingMs Pacman agent with Evolutionary Computation using fitness function, the criterion of the fitness is used its obtained high score in many cases. In contrast, ghost team has to prevent Ms Pac-man to get high score, namely hold score in check. However, if Ms Pacman is captured in low score by accident, its ghost strategy have a possibility to survive next generation, and if the ghosts pursue Ms Pac-man in a line, agent isn’t captured for all time. Therefore developing ghost team agent is required to avoid these issues, and we introduced a penalty to the fitness, grammar like instinct and to attack Ms Pac-Man on both sides. This paper introduces experimental data about the ghost team controller for Ms Pac-Man versus ghost team, we used ghost team agents and tested them Ms Pac-Man agents. The experimental results showed that proposed system could catchMs Pac-Man agent compare with simple hand-coded ghost teams, and the evolved controller we made worked effectively. These results are concluded that proposed method works effectively for generating ghost controller.


Sign in / Sign up

Export Citation Format

Share Document