Transcriptional regulation of seed oil accumulation in Arabidopsis thaliana: role of transcription factors and chromatin remodelers

2020 ◽  
Vol 29 (4) ◽  
pp. 754-768
Author(s):  
Naveen Kumar ◽  
Aishwarya Chaudhary ◽  
Deepali Singh ◽  
Sachin Teotia
2018 ◽  
Vol 120 ◽  
pp. S116
Author(s):  
Ana Maria Cunha ◽  
Sara Laranjeira ◽  
Shweta Singh ◽  
João Raimundo ◽  
Rómulo Sobral ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Tetsuya Hisanaga ◽  
Shota Fujimoto ◽  
Yihui Cui ◽  
Katsutoshi Sato ◽  
Ryosuke Sano ◽  
...  

KNOX and BELL transcription factors regulate distinct steps of diploid development in plants. In the green alga Chlamydomonas reinhardtii, KNOX and BELL proteins are inherited by gametes of the opposite mating types and heterodimerize in zygotes to activate diploid development. By contrast, in land plants such as Physcomitrium patens and Arabidopsis thaliana, KNOX and BELL proteins function in meristem maintenance and organogenesis during the later stages of diploid development. However, whether the contrasting functions of KNOX and BELL were acquired independently in algae and land plants is currently unknown. Here, we show that in the basal land plant species Marchantia polymorpha, gamete-expressed KNOX and BELL are required to initiate zygotic development by promoting nuclear fusion in a manner strikingly similar to that in C. reinhardtii. Our results indicate that zygote activation is the ancestral role of KNOX/BELL transcription factors, which shifted toward meristem maintenance as land plants evolved.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. SCI-30-SCI-30
Author(s):  
Jay L. Hess ◽  
Cailin Collins ◽  
Joel Bronstein ◽  
Yuqing Sun ◽  
Surya Nagaraja

Abstract Abstract SCI-30 HOXA9 plays important roles in both development and hematopoiesis and is overexpressed in more than 50 percent of acute myeloid leukemias (AML). Nearly all cases of AML with mixed lineage leukemia (MLL) translocations show increased HOXA9 expression, as well as cases with mutation of the nucleophosmin gene NPM1, overexpression of CDX2, and fusions of NUP98. In most cases, upregulation of HOXA9 is accompanied by upregulation of its homeodomain-containing cofactor MEIS1, which directly interacts with HOXA9. While HOXA9 alone is sufficient for transformation of hematopoietic stem cells in culture, the addition of MEIS1 increases the transformation efficiency and results in rapidly fatal leukemias in transplanted animals. Despite the crucial role that HOXA9 plays in development, hematopoiesis, and leukemia, its transcriptional targets and mechanisms of action are poorly understood. We have used ChIP-seq to identify Hoxa9 and Meis1 binding sites on a genome-wide level in myeloblastic cells, profiled their associated epigenetic modifications, identified the target genes regulated by HOXA9 and identified HOXA9 interacting proteins. HOXA9 and MEIS1 cobind at hundreds of promoter distal, highly evolutionarily conserved sites showing high levels of histone H3K4 monomethylation and CBP/P300 binding. These include many proleukemogenic gene loci, such as Erg, Flt3, Myb, Lmo2, and Sox4. In addition, HOXA9 binding sites overlap a subset of enhancers previously implicated in myeloid differentiation and inflammation. HOXA9 binding at enhancers stabilizes association of MEIS1 and lineage-restricted transcription factors, including C/EBPα, PU.1, and STAT5A/B thereby promoting CBP/p300 recruitment, histone acetylation, and transcriptional activation. Current efforts are focused on using both biochemical and genetic approaches to assess the role of HOXA9 “enhanceosome” components C/EBPα, PU.1, and STAT5A/B in transcriptional regulation and leukemogenesis. Studies to date suggest that C/EBPα and PU.1 binding can occur in the absence of HOXA9/MEIS1, supporting a model in which these proteins act as pioneer transcription factors for establishment of poised, but not activated, HOXA9-regulated enhancers. Work is under way to assess the impact of high-level HOXA9 and MEIS1 on enhanceosome assembly and the role of recruitment of transcriptional coactivators involved in target gene up- or downregulation, including histone acetyltransferases and chromatin remodeling complexes. Collectively, our findings suggest that HOXA9-regulated enhancers are a fundamental mechanism of HOX-mediated transcription in normal development that is deregulated in leukemia. Disclosures: No relevant conflicts of interest to declare.


Cell Research ◽  
2008 ◽  
Vol 18 (7) ◽  
pp. 756-767 ◽  
Author(s):  
Qingyun Bu ◽  
Hongling Jiang ◽  
Chang-Bao Li ◽  
Qingzhe Zhai ◽  
Jie Zhang ◽  
...  

2020 ◽  
Vol 48 (2) ◽  
pp. 463-478
Author(s):  
Ana Talamillo ◽  
Orhi Barroso-Gomila ◽  
Immacolata Giordano ◽  
Leiore Ajuria ◽  
Marco Grillo ◽  
...  

During the development of multicellular organisms, transcriptional regulation plays an important role in the control of cell growth, differentiation and morphogenesis. SUMOylation is a reversible post-translational process involved in transcriptional regulation through the modification of transcription factors and through chromatin remodelling (either modifying chromatin remodelers or acting as a ‘molecular glue’ by promoting recruitment of chromatin regulators). SUMO modification results in changes in the activity, stability, interactions or localization of its substrates, which affects cellular processes such as cell cycle progression, DNA maintenance and repair or nucleocytoplasmic transport. This review focuses on the role of SUMO machinery and the modification of target proteins during embryonic development and organogenesis of animals, from invertebrates to mammals.


2020 ◽  
Vol 169 (4) ◽  
pp. 612-624 ◽  
Author(s):  
Ge Song ◽  
Xueping Li ◽  
Raheel Munir ◽  
Ali Raza Khan ◽  
Wardah Azhar ◽  
...  

Author(s):  
christopher baker ◽  
Jared Stewart ◽  
Cynthia Amstutz ◽  
Jeffrey Johnson ◽  
Lindsey Ching ◽  
...  

When grown under cool temperature, winter annuals upregulate photosynthetic capacity as well as freezing tolerance. Here, the role of three cold-induced C-repeat-Binding Factor (CBF1–3) transcription factors in photosynthetic upregulation and freezing tolerance was examined in two Arabidopsis thaliana ecotypes originating from Italy (IT) or Sweden (SW), and their corresponding CBF1–3-deficient mutant lines it:cbf123 and sw:cbf123. Photosynthetic, morphological, and freezing-tolerance phenotypes as well as gene expression profiles were characterized in plants grown from seedling stage under different combinations of light level and temperature. Under high light and cool growth temperature (HLC), a greater role of CBF1–3 in IT versus SW was evident from both phenotypic and transcriptomic data, especially with respect to photosynthetic upregulation and freezing tolerance of whole plants. Overall, features of SW were consistent with a different approach to HLC acclimation than seen in IT, and an ability of SW to reach the new homeostasis through involvement of transcriptional controls other than CBF1–3. These results provide tools and direction for further mechanistic analysis of the transcriptional control of approaches to cold acclimation suitable for either persistence through brief cold spells or for maximization of productivity in environments with continuous low temperatures.


Sign in / Sign up

Export Citation Format

Share Document