scholarly journals Role of CBF transcription factors during long-term acclimation to high light and low temperature in two ecotypes of Arabidopsis thaliana

Author(s):  
christopher baker ◽  
Jared Stewart ◽  
Cynthia Amstutz ◽  
Jeffrey Johnson ◽  
Lindsey Ching ◽  
...  

When grown under cool temperature, winter annuals upregulate photosynthetic capacity as well as freezing tolerance. Here, the role of three cold-induced C-repeat-Binding Factor (CBF1–3) transcription factors in photosynthetic upregulation and freezing tolerance was examined in two Arabidopsis thaliana ecotypes originating from Italy (IT) or Sweden (SW), and their corresponding CBF1–3-deficient mutant lines it:cbf123 and sw:cbf123. Photosynthetic, morphological, and freezing-tolerance phenotypes as well as gene expression profiles were characterized in plants grown from seedling stage under different combinations of light level and temperature. Under high light and cool growth temperature (HLC), a greater role of CBF1–3 in IT versus SW was evident from both phenotypic and transcriptomic data, especially with respect to photosynthetic upregulation and freezing tolerance of whole plants. Overall, features of SW were consistent with a different approach to HLC acclimation than seen in IT, and an ability of SW to reach the new homeostasis through involvement of transcriptional controls other than CBF1–3. These results provide tools and direction for further mechanistic analysis of the transcriptional control of approaches to cold acclimation suitable for either persistence through brief cold spells or for maximization of productivity in environments with continuous low temperatures.

2019 ◽  
Vol 20 (12) ◽  
pp. 3073 ◽  
Author(s):  
Ana Dienstbier ◽  
Fabian Amman ◽  
Daniel Štipl ◽  
Denisa Petráčková ◽  
Branislav Večerek

Bordetella pertussis is a Gram-negative strictly human pathogen of the respiratory tract and the etiological agent of whooping cough (pertussis). Previously, we have shown that RNA chaperone Hfq is required for virulence of B. pertussis. Furthermore, microarray analysis revealed that a large number of genes are affected by the lack of Hfq. This study represents the first attempt to characterize the Hfq regulon in bacterial pathogen using an integrative omics approach. Gene expression profiles were analyzed by RNA-seq and protein amounts in cell-associated and cell-free fractions were determined by LC-MS/MS technique. Comparative analysis of transcriptomic and proteomic data revealed solid correlation (r2 = 0.4) considering the role of Hfq in post-transcriptional control of gene expression. Importantly, our study confirms and further enlightens the role of Hfq in pathogenicity of B. pertussis as it shows that Δhfq strain displays strongly impaired secretion of substrates of Type III secretion system (T3SS) and substantially reduced resistance to serum killing. On the other hand, significantly increased production of proteins implicated in transport of important metabolites and essential nutrients observed in the mutant seems to compensate for the physiological defect introduced by the deletion of the hfq gene.


2020 ◽  
Author(s):  
Wenying Yu ◽  
Mei Lin ◽  
Minghui Peng ◽  
Huijuan Yan ◽  
Jie Zhou ◽  
...  

AbstractPeroxisomes are ubiquitous organelles in eukaryotic cells that fulfill various important metabolic functions. In this study, we investigated the role of Docking/Translocation Module (DTM) peroxins, mainly FvPex8, FvPex13, FvPex14, and FvPex33, in Fusarium verticillioides virulence and fumonisin B1 (FB1) biosynthesis. Protein interaction experiments suggested that FvPex13 serves as the core subunit of F. verticillioides DTM. When we generated gene deletion mutants (ΔFvpex8, ΔFvpex13, ΔFvpex14, ΔFvpex33, ΔFvpex33/14) and examined whether the expression of other peroxin genes were affected in the DTM mutants, ΔFvpex8 strain showed most drastic changes to PEX gene expression profiles. Deletion mutants exhibited disparity in carbon source utilization and defect in cell wall integrity when stress agents were applied. Under nutrient starvation, mutants also showed higher levels of lipid droplet accumulation. Notably, ΔFvpex8 mutant showed significant FB1 reduction and altered expression of FUM1 and FUM19 genes. However, FvPex13 was primarily responsible for virulence, while ΔFvpex33/14 double mutant also showed virulence defect. In summary, our study suggests that FvPex13 is the core component of DTM, regulating peroxisome membrane biogenesis as well as PTS1- and PTS2-mediated transmembrane cargo transportation. Importantly, we predict FvPex8 as a key component in DTM that affects peroxisome function in FB1 biosynthesis in F. verticillioides.


Author(s):  
Vasil Atanasov ◽  
Lisa Fürtauer ◽  
Thomas Nägele

Diurnal and seasonal changes of abiotic environmental factors shape plant performance and distribution. Changes of growth temperature and light intensity may vary significantly on a diurnal, but also on a weekly or seasonal scale. Hence, acclimation to a changing temperature and light regime is essential for plant survival and propagation. In the present study, we analyzed photosynthetic CO2 assimilation and metabolic regulation of the central carbohydrate metabolism in two natural accessions of Arabidopsis thaliana originating from Russia and south Italy during exposure to heat and a combination of heat and high light. Our findings indicate that it is hardly possible to predict photosynthetic capacities to fix CO2 under combined stress from single stress experiments. Further, capacities of hexose phosphorylation were found to be significantly lower in the Italian than in the Russian accession which could explain an inverted sucrose-to-hexose ratio. Together with the finding of significantly stronger accumulation of anthocyanins under heat/high light these observations indicate a central role of hexokinase activity in stabilization of photosynthetic capacities within a changing environment.


2020 ◽  
Author(s):  
Xiaorui Xu ◽  
Jingya Xu ◽  
Chen Yuan ◽  
Yikai Hu ◽  
Qinggang Liu ◽  
...  

Abstract BackgroundThe TGA family has ten members and plays vital roles in plant defence and development in Arabidopsis. However, involvement of TGAs in control of flowering time remains largely unknown and requires further investigation. ResultsTo study the role of TGA7 during the floral transition, we first tested phenotypes of tga7 mutant, which displayed delay-flowering phenotype under both long-day and short-day conditions. We then performed flowering genetic pathways analysis and found that both autonomous and thermosensory pathways may affect TGA7 expression. Furthermore, to reveal differential gene expression profiles between wild-type (WT) and tga7, cDNA libraries were generated for WT and tga7 mutant seedlings at 9 DAG (days after germination). For each library, deep-sequencing produced approximately 6.67 Gb of high-quality sequences with the majority (84.55%) of mRNAs between 500 and 3000 nucleotides in length. Three hundred and twenty-five differentially expressed genes (DEGs) were identified between WT and tga7 mutant seedlings. Among them, four genes are associated with flowering time control. Differential expression of the four flowering-related DEGs was further validated by qRT-PCR.ConclusionsTransciptomic sequencing coupled with flowering genetic pathways analysis provides a framework for further studying the role of TGA7 in promoting flowering.


2018 ◽  
Vol 120 ◽  
pp. S116
Author(s):  
Ana Maria Cunha ◽  
Sara Laranjeira ◽  
Shweta Singh ◽  
João Raimundo ◽  
Rómulo Sobral ◽  
...  

2020 ◽  
Vol 21 (5) ◽  
pp. 1879 ◽  
Author(s):  
Shanshan He ◽  
Gaopeng Yuan ◽  
Shuxun Bian ◽  
Xiaolei Han ◽  
Kai Liu ◽  
...  

Major latex proteins (MLPs) play critical roles in plants defense and stress responses. However, the roles of MLPs from apple (Malus × domestica) have not been clearly identified. In this study, we focused on the biological role of MdMLP423, which had been previously characterized as a potential pathogenesis-related gene. Phylogenetic analysis and conserved domain analysis indicated that MdMLP423 is a protein with a ‘Gly-rich loop’ (GXGGXG) domain belonging to the Bet v_1 subfamily. Gene expression profiles showed that MdMLP423 is mainly expressed in flowers. In addition, the expression of MdMLP423 was significantly inhibited by Botryosphaeria berengeriana f. sp. piricola (BB) and Alternaria alternata apple pathotype (AAAP) infections. Apple calli overexpressing MdMLP423 had lower expression of resistance-related genes, and were more sensitive to infection with BB and AAAP compared with non-transgenic calli. RNA-seq analysis of MdMLP423-overexpressing calli and non-transgenic calli indicated that MdMLP423 regulated the expression of a number of differentially expressed genes (DEGs) and transcription factors, including genes involved in phytohormone signaling pathways, cell wall reinforcement, and genes encoding the defense-related proteins, AP2-EREBP, WRKY, MYB, NAC, Zinc finger protein, and ABI3. Taken together, our results demonstrate that MdMLP423 negatively regulates apple resistance to BB and AAAP infections by inhibiting the expression of defense- and stress-related genes and transcription factors.


2017 ◽  
Vol 5 (0) ◽  
pp. 21-35 ◽  
Author(s):  
Shiori Miura ◽  
Takehiro Himaki ◽  
Junko Takahashi ◽  
Hitoshi Iwahashi

Sign in / Sign up

Export Citation Format

Share Document