scholarly journals Pressures on soil functions from soil management in Germany. A foresight review

Author(s):  
Anja-Kristina Techen ◽  
Katharina Helming
Soil Research ◽  
2004 ◽  
Vol 42 (7) ◽  
pp. 793 ◽  
Author(s):  
Teklu Erkossa ◽  
Karl Stahr ◽  
Thomas Gaiser

The study was conducted at Caffee Doonsa (08°88′N, 39°08′E; 2400 m asl), a small watershed in the central highlands of Ethiopia, in order to identify farmers’ goals of soil management and the indicators they use in selecting soils for a certain function, and to categorise the soils in different quality groups with respect to the major functions. Thirty-six male farmers of different age and wealth groups participated in a Participatory Rural Appraisal technique. They listed and prioritised 12 soil functions in the area and itemised the soil quality indicators (characteristics). Based on the indicators, the soils in the watershed were classified into 3 soil quality (SQ) groups (Abolse, Kooticha, and Carii). The SQ groups have been evaluated and ranked for the major soil functions. For crop production, Abolse was graded best, followed by Kooticha and Carii, respectively. The grain and straw yield data of wheat (Triticum aestivum L.) taken from the SQ groups confirmed the farmers claim, in that Abolse gave the highest grain yield (4573 kg/ha), followed by 4411 and 3657 kg/ha for Kooticha and Carii, respectively. Local insights should be included in systematic soil quality assessment, and in planning and implementation of various soil management interventions.


2018 ◽  
Vol 10 (12) ◽  
pp. 4432 ◽  
Author(s):  
Katharina Helming ◽  
Katrin Daedlow ◽  
Bernd Hansjürgens ◽  
Thomas Koellner

The globally increasing demand for food, fiber, and bio-based products interferes with the ability of arable soils to perform their multiple functions and support sustainable development. Sustainable soil management under high production conditions means that soil functions contribute to ecosystem services and biodiversity, natural and economic resources are utilized efficiently, farming remains profitable, and production conditions adhere to ethical and health standards. Research in support of sustainable soil management requires an interdisciplinary approach to three interconnected challenges: (i) understanding the impacts of soil management on soil processes and soil functions; (ii) assessing the sustainability impacts of soil management, taking into account the heterogeneity of geophysical and socioeconomic conditions; and (iii) having a systemic understanding of the driving forces and constraints of farmers’ decision-making on soil management and how governance instruments may, interacting with other driving forces, steer sustainable soil management. The intention of this special issue is to take stock of an emerging interdisciplinary research field addressing the three challenges of sustainable soil management in various geographic settings. In this editorial, we summarize the contributions to the special issue and place them in the context of the state of the art. We conclude with an outline of future research needs.


2019 ◽  
pp. 77-82 ◽  
Author(s):  
Hans-Jörg Vogel ◽  
Ute Wollschläger ◽  
Katharina Helming ◽  
Uwe Heinrich ◽  
Matthias Willms ◽  
...  

2006 ◽  
Vol 21 (1) ◽  
pp. 49-59 ◽  
Author(s):  
B.J. Wienhold ◽  
J.L. Pikul ◽  
M.A. Liebig ◽  
M.M. Mikha ◽  
G.E. Varvel ◽  
...  

AbstractSoils perform a number of essential functions affecting management goals. Soil functions were assessed by measuring physical, chemical, and biological properties in a regional assessment of conventional (CON) and alternative (ALT) management practices at eight sites within the Great Plains. The results, reported in accompanying papers, provide excellent data for assessing how management practices collectively affect agronomic and environmental soil functions that benefit both farmers and society. Our objective was to use the regional data as an input for two new assessment tools to evaluate their potential and sensitivity for detecting differences (aggradation or degradation) in management systems. The soil management assessment framework (SMAF) and the agro-ecosystem performance assessment tool (AEPAT) were used to score individual soil properties at each location relative to expected conditions based on inherent soil-forming factors and to compute index values that provide an overall assessment of the agronomic and environmental impact of the CON and ALT practices. SMAF index values were positively correlated with grain yield (an agronomic function) and total organic matter (an agronomic and environmental function). They were negatively correlated with soil nitrate concentration at harvest (an indicator of environmental function). There was general agreement between the two assessment tools when used to compare management practices. Users can measure a small number of soil properties and use one of these tools to easily assess the effectiveness of soil management practices. A higher score in either tool identifies more environmentally and agronomically sustainable management. Temporal variability in measured indicators makes dynamic assessments of management practices essential. Water-filled pore space, aggregate stability, particulate organic matter, and microbial biomass were sensitive to management and should be included in studies aimed at improving soil management. Reductions in both tillage and fallow combined with crop rotation has resulted in improved soil function (e.g., nutrient cycling, organic C content, and productivity) throughout the Great Plains.


2017 ◽  
Author(s):  
Hans-Jörg Vogel ◽  
Stephan Bartke ◽  
Katrin Daedlow ◽  
Katharina Helming ◽  
Ingrid Kögel-Knabner ◽  
...  

Abstract. The central importance of soil for the functioning of terrestrial systems is increasingly recognized. Critically relevant for water quality, climate control, nutrient cycling and biodiversity, soil provides more functions than just the basis for agricultural production. Nowadays, soil is increasingly under pressure as a limited resource for the production of food, energy and raw materials. This has led to an increasing demand for concepts assessing soil functions so that they can be adequately considered in decision making aimed at sustainable soil management. The various soil science disciplines have progressively developed highly sophisticated methods to explore the multitude of physical, chemical and biological processes in soil. It is not obvious, however, how the steadily improving insight into soil processes may contribute to the evaluation of soil functions. Here we present to a new systemic modeling framework that allows for a consistent coupling between reductionist yet observable indicators for soil functions with detailed process understanding. It is based on the mechanistic relationships between soil functional attributes, each explained by a network of interacting processes as derived from scientific evidence. The non-linear character of these interactions produces stability and resilience of soil with respect to functional characteristics. We anticipate that this new conceptional framework will integrate the various soil science disciplines and help identify important future research questions at the interface between disciplines. It allows the overwhelming complexity of soil systems to be adequately coped with and paves the way for steadily improving our capability to assess soil functions based on scientific understanding.


2003 ◽  
Vol 51 (1) ◽  
pp. 109-124 ◽  
Author(s):  
G. Várallyay

Soils represent a considerable part of the natural resources of Hungary. Consequently, rational land use and proper soil management - to guarantee normal soil functions - are important elements of sustainable (agricultural) development, having special importance both in the national economy and in environment protection. The main soil functions in the biosphere are as follows: -conditionally renewable natural resource; -reactor, transformer and integrator of the combined influences of other natural resources (solar -radiation, atmosphere, surface and subsurface waters, biological resources), site of “sphereinteractions”; -medium for biomass production, primary food-source of the biosphere; -storage of heat, water, plant nutrients and - in some special cases - wastes; -high capacity buffer medium, which may prevent or moderate the unfavourable consequences of various environmental stresses; -natural filter and detoxication system, which may protect the deeper geological formations and the subsurface waters from various pollutants; -significant gene reservoir, an important element of biodiversity; -conservator of natural and human heritages. Society has utilized these functions in different ways (rate, method, efficiency) throughout history, depending on the given natural conditions and socio-economic circumstances. In many cases the character of the particular functions has not been properly taken into consideration during the utilization of soil resources, and misguided management has resulted in their over-exploitation, in the decreasing efficiency of one or more soil functions, and - above a certain limit - in serious environmental deterioration. The scientifically based planning and implementation of sustainable land use and rational soil management to ensure desirable soil functions, without any undesirable environmental side-effects, require the efficient control of soil processes.


2021 ◽  
Author(s):  
Ute Wollschläger ◽  
Axel Don ◽  
Christopher Poeplau ◽  
Ulrich Weller ◽  
Martin Wiesmeier ◽  
...  

<p>The quantitative evaluation of the impact of agricultural management and climate change on soil functions is prerequisite for developing sustainable soil management. Soil functions are integral properties emerging from complex process interactions. They cannot be measured directly so that we need to rely on evaluation schemes based on indicators.</p><p>Vogel et al. (2019) developed a scheme to quantitatively evaluate soil functions which distinguishes between a soil’s potential and its actual state. They defined a soil’s potential to provide a soil function to be the maximum a soil can offer based on its inherent properties and site conditions while assuming that all soil properties that can be affected by soil management are in some optimum state within the limits of good agricultural practice. In contrast, a soil’s state is evaluated based on its manageable soil attributes. It can be applied to describe the room for improvement.</p><p>In this presentation, we apply the evaluation scheme by Vogel et al. (2019) at the scale of Germany using the data from the German Agricultural Soil Inventory (Jacobs et al., 2018; Poeplau et al., 2020). We use the data from more than 2200 soil profiles from arable sites and calculate indicators for potentials and actual states for the production function, the carbon storage function and the water storage function. For all functions, results show characteristic patterns which can be related to climatic and soil conditions but also provide evidence about the influence of agricultural management on soil functions. The results of this study may be used to analyze synergies and trade-offs between the various soil functions and to develop options for more sustainable soil management.</p><p> </p><p>References:</p><p>Jacobs, A., Flessa, H., Don, A., Heidkamp, A., Prietz, R., Dechow, R., et al. (2018). Landwirtschaftlich genutzte Böden in Deutschland - Ergebnisse der Bodenzustandserhebung. doi:10.3220/REP1542818391000.</p><p>Poeplau, C., Don, A., Flessa, H., Heidkamp, A., Jacobs, A., and Prietz, R. (2020). Erste Bodenzustandserhebung Landwirtschaft -- Kerndatensatz. doi:10.3220/DATA20200203151139.</p><p>Vogel, H.-J., Eberhardt, E., Franko, U., Lang, B., Ließ, M., Weller, U., et al. (2019). Quantitative Evaluation of Soil Functions: Potential and State. Front. Environ. Sci. 7, 164. doi:10.3389/fenvs.2019.00164.</p>


2002 ◽  
pp. 62-74
Author(s):  
György Várallyay

Soils represent a considerable part of the natural resources of Hungary. Consequently, rational land use and proper soil management – to guarantee normal soil functions – are important elements of sustainable (agricultural) development, having special importance both in the national economy and in environment protection.The main soil functions in the biosphere are as follows: conditionally renewable natural resource; reactor, transformer and integrator of the combined influences of other natural resources (solar radiation, atmosphere, surface and subsurface waters, biological resources), place of „sphere-interactions”; medium for biomass production, primary food-source of the biosphere; storage of heat, water and plant nutrients; natural filter and detoxication system, which may prevent the deeper geological formations and the subsurface waters from various pollutants; high capacity buffer medium, which may prevent or moderate the unfavourable consequences of various environmental stresses; significant gene-reservoir, an important element of biodiversity.Society utilizes these functions in different ways (rate, method, efficiency) throughout history, depending on the given natural conditions and socio-economic circumstances. In many cases the character of the particular functions was not properly taken into consideration during the utilization of soil resources, and the misguided management resulted in their over-exploitation, decreasing efficiency of one or more soil functions, and – over a certain limit – serious environmental deterioration.Soil resources are threatened by the following environmental stresses:– soil degradation processes;– extreme moisture regime;– nutrient stresses (deficiency or toxicity);– environmental pollution.Environmental stresses caused by natural factors or human activities represent an increasing ecological threat to the biosphere, as well as a socio-economic risk for sustainable development, including rational land use and soil management.The stresses are caused by the integrated impacts of various soil properties, which are the results of soil processes (mass and energy regimes, abiotic and biotic transport and transformation and their interactions) under the combined influences of soil forming factors. Consequently, the control of soil processes is a great challenge and the main task of soil science and soil management in sustainable development.The efficient control of these processes necessitates the following consecutive steps:• registration of facts and consequences (information on land and soil characteristics, land use, cropping pattern, applied agrotechnics, yields, with their spatial and temporal variability);• evaluation of potential reasons (definition and quantification of soil processes, analysis of influencing factors and their mechanisms);• assessment of the theoretical, real, rational and economic possibilities for the control of soil processes (including their risk-assessment and impact analysis);• elaboration of efficient technologies for the „best” control alternatives (best management practice).Scientifically based planning and implementation of sustainable land use and rational soil management to ensure desirable soil functions, without any undesirable environmental side-effects, require adequate soil information. In the last years such data were organized into a computer-based GIS soil database in Hungary, giving opportunities for the quantification, analysis, modelling and forecasting of the studied environmental stresses and for the efficient and scientifically based prevention, elimination or reduction of environmental stresses and their unfavourable ecological and economical consequences.Special attention was paid to the assessment of various soil degradation processes, as: (1) soil erosion by water or wind; (2) soil acidification; (3) salinization and/or alkalization; (4) physical degradation (structure destruction, compaction); (5) extreme moisture regime: drought sensitivity and waterlogging hazard; (6) biological degradation; (7) unfavourable changes in the plant nutrient regime; (8) decrease of natural buffering capacity, (9) soil (and water) pollution.The actions against undesirable environmental stresses and their unfavourable consequences are important elements of sustainable, efficient, economically viable, socially acceptable and environmentally sound crop production and agricultural development. These are joint tasks of the state, decision makers on various levels, the land owners, the land users and – to a certain extent – of each member of the society.


2009 ◽  
Vol 24 (4) ◽  
pp. 260-266 ◽  
Author(s):  
B.J. Wienhold ◽  
D.L. Karlen ◽  
S.S. Andrews ◽  
D.E. Stott

AbstractAssessment tools are needed to evaluate agronomic management effects on critical soil functions such as carbon sequestration, nutrient cycling and water partitioning. These tools need to be flexible in terms of selection of soil functions to be assessed and indicators to be measured to ensure that assessments are appropriate for the management goals. The soil management assessment framework (SMAF) is being developed to meet this need. The SMAF uses soil physical, chemical and biological indicator data to assess management effects on soil function using a three-step process for (1) indicator selection, (2) indicator interpretation and (3) integration into an index. While SMAF is functional in its present format, it is intended to be malleable so that user needs can be met. Development of additional indicator interpretation scoring curves is one way that this framework can be expanded. Scoring curve development is a multi-step process of identifying an indicator, determining the nature of the relationship of the indicator to a soil function, programming an algorithm and/or logic statements describing that relationship and validating the resulting scoring curve. This paper describes the steps involved in developing an SMAF scoring curve. Scoring curves for interpreting water-filled pore space (WFPS) and Mehlich extractable potassium (K) were developed using the described protocol. This protocol will assist users of the SMAF in understanding how the existing scoring curves were developed and others interested in developing scoring curves for indicators that are not in the current version.


Sign in / Sign up

Export Citation Format

Share Document