scholarly journals Ancient wheat species are suitable to grain-only and grain plus herbage utilisations in marginal Mediterranean environments

Author(s):  
Francesco Cadeddu ◽  
Rosella Motzo ◽  
Francesca Mureddu ◽  
Francesco Giunta

AbstractThanks to their low fertilization requirements and high consumer demand, ancient wheats and old durum wheat cultivars represent an attractive option for the marginal areas of Mediterranean environments no longer cultivated due to the low grain yields attainable using modern wheat cultivars. Dual-purpose utilization may increase their value in these cropping systems, but no information is available on the suitability of ancient wheat species to this type of utilization. To fill this gap, Khorasan, einkorn, and emmer wheats, clipped at the terminal spikelet stage or left unclipped, were compared in a two-year field trial. The grains were sown in the month of October, in Sardinia (41°N, 80 m asl), Italy, on low-fertility soils and with low-medium fertilization rates. Einkorn cultivars produced the highest biomass yield (2–3 t ha−1), reflecting the longer time to the onset of the terminal spikelet stage (119–138 days). After clipping, all species recovered their ability to intercept radiation to the levels of the unclipped crops, but clipping lowered their radiation use-efficiency. Grain yield was not penalized by clipping: the increase in the harvest index compensated for the decrease in biomass. Here we show for the first time that ancient wheat species are suitable for dual-purpose utilization (herbage plus grain in the same season) rendering them valuable for marginal areas; this was because the early sowing adopted for dual-purpose utilization allowed them to take full advantage of their lateness in terms of herbage yield, and to bring flowering forward (i.e. make it earlier) so that a satisfactory grain yield was obtained, even under severe water stress. Dual-purpose utilization of ancient wheats increases the sustainability of mixed cropping systems, by making herbage available to animals in a critical period, without decreasing the grain yield attainable after grazing in the same season.

1990 ◽  
Vol 41 (1) ◽  
pp. 1 ◽  
Author(s):  
JL Davidson ◽  
DB Jones ◽  
KR Christian

The possibility of combining the early rapid growth of extreme spring (express) wheat cultivars with the high grain-producing ability of long-season types as a dual-purpose crop (fodder and grain) for the high-rainfall zone of E. Australia was investigated in an experiment at Canberra in 1985. Mixtures of cv. Sunset, an express wheat, and Isis, a winter wheat, in the proportions of 1:3, 1:1 and 3:1, were compared with 4 long-season and 2 short season wheat cultivars, oats and pastures (Lolium rigidum/Trifolium subterraneum with and without N fertilizer), all sown at the end of summer. Cereals and pastures were cut monthly from 3 different starting dates. Cereals were cut until their developing ears were above ground, and pastures were cut until the trial ended in Nov. In a 4th treatment, cereals were left uncut. An early start to cutting allowed all long-season wheats to be harvested several times for fodder, but in general the total amount harvested was greatest from the latest initial cutting date treatment. The greatest amount of DM harvested (9 t/ha) came from the express wheat Sunset and from Sunset/Isis mixtures, 2 t/ha more than from Isis alone. As well as producing considerably greater amounts of DM during winter, the Sunset/Isis mixtures yielded as much grain (3.4 t/ha from the latest initial cutting date treatment) as Isis alone. DM and grain yields of mixtures were stable across the range of ratios used. It was concluded that grazing of crops sown for winter feed in cool environments should be delayed as long as possible without endangering ears, thereby providing max. amounts of fodder and effectively smothering weeds. Under this regime, mixtures of express and winter wheats should provide at least as much feed as a pasture treated similarly. If cutting started early, both would be less productive, and the crop could be inferior to the pasture.


Bragantia ◽  
2011 ◽  
Vol 70 (4) ◽  
pp. 819-824 ◽  
Author(s):  
Marcel Hastenpflug ◽  
Thomas Newton Martin ◽  
João Alfredo Braida ◽  
Deivid Kelli Barbosa ◽  
Renice Paula Zielinski ◽  
...  

The aim of this work was to evaluate the effect of nitrogen fertilization and aerial part cuts on yield components, grain yield and quality of the grains for dual-purpose wheat cultivars. The experiment was carried out between May and November 2007 and the experimental design was randomized complete blocks with three replications. The main causes of variation were dual-purpose wheat cultivars (BRS Figueira, BRS Umbu, BRS Guatambu and BRS Tarumã), nitrogen doses (0, 45, 90, 135 and 180 kg ha-1) and cut systems. Each plot was subdivided by cut management (without cut, one cut and two cuts). Spike mass, number of spikelets per spike, number of grains per spikelet, grain yield and hectoliter weight were evaluated. Nitrogen fertilization did not affect the performance of wheat genotypes, but there was interaction between the management systems and the cultivars. The shorter-cycle cultivars (Figueira and Umbu) presented greater grain yield than the others when they were not cut. As quality and yield fell when Figueira and Umbu were cut, the later cultivars (Tarumã and Guatambu) are more adapted to cut (grazing). The lack of an effect from nitrogen dose and application strategy on the variables studied was influenced by the ecological conditions prevailing during the experimental period.


2020 ◽  
Vol 71 (7) ◽  
pp. 668 ◽  
Author(s):  
Aman Ullah ◽  
Muhammad Farooq ◽  
Faisal Nadeem ◽  
Abdul Rehman ◽  
Ahmad Nawaz ◽  
...  

Chickpea (Cicer arietinum L.) is a leading food legume primarily grown in marginal areas and consumed all over the world. However, its production is limited owing to zinc (Zn) deficiency in many chickpea-based cropping systems. This study was conducted over two years to evaluate the effect of Zn application through seed treatments on productivity and grain Zn biofortification of kabuli and desi chickpea types in Punjab, Pakistan. Pre-optimised doses of Zn were applied as (i) seed priming (0.001 m Zn) and (ii) seed coating (5 mg Zn kg–1 seed), using ZnSO4.7H2O (33% Zn). Hydropriming (soaking in water) and non-primed dry seeds were used as control treatments. Zinc seed treatments significantly improved leghemoglobin contents, nodulation, grain yield, grain Zn yield, grain bioavailable Zn, grain minerals and grain Zn concentration compared with control treatments in both chickpea types. During both years, kabuli chickpea receiving Zn seed coating had higher grain yield (2.22 and 2.73 t ha–1) and grain Zn yield (103 and 129 g ha–1) than kabuli receiving other treatments. Likewise, during both study years, maximum grain bioavailable Zn (4.58 and 4.55 mg Zn day–1) was recorded with Zn seed coating in both chickpea types. Kabuli chickpea had more grain bioavailable Zn than desi. With regard to seed treatments, desi chickpea was more responsive to Zn osmopriming, whereas kabuli was more responsive to Zn seed coating. In conclusion, Zn seed treatments, as seed priming and seed coating, are effective methods for improving the productivity, grain quality and Zn biofortification of both desi and kabuli chickpea.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 811
Author(s):  
Z. Najafi Vafa ◽  
Y. Sohrabi ◽  
R. Z. Sayyed ◽  
Ni Luh Suriani ◽  
Rahul Datta

Wheat is a staple food consumed by the majority of people in the world and its production needs to be doubled to feed the growing population. On the other hand, global wheat productivity is greatly affected due to drought and low fertility of soil under arid and semi-arid regions. Application of supplementary irrigation and plant growth-promoting rhizobacteria (PGPR) has been suggested as sustainable measures to combat drought stress and to improve soil fertility and, hence, crop yield. This research was undertaken to study the effect of supplementary irrigation together with a combination of various PGPR on the growth and yield of two wheat cultivars, namely Sardari and Sirvan. The results of variance analysis (mean of squares) showed that the effect of irrigation, cultivar, and irrigation and biofertilizer and irrigation on height, spike length, seed/spike, and numbers of spikes/m2, 1000-seed weight, and grain yield were significant at 1% probability level. The effect of cultivar and irrigation interactions showed that the highest grain yield was obtained in a treatment with two additional irrigations in Sirvan cultivar (5015.0 kg/ha) and Sardari (4838.9 kg/ha) as compared to the 3598 kg/ha and 3598.3 kg/h grain yield in Sirvan and Sardari cultivars with similar treatment, but without irrigation, i.e., dryland farming. Drought conditions significantly affected the wheat grain yield while supplementary irrigation resulted in 39.38% and 34.48% higher yields in Sirvan and Sardari cultivars.


2008 ◽  
Vol 44 (3) ◽  
pp. 339-348 ◽  
Author(s):  
J. R. WITCOMBE ◽  
M. BILLORE ◽  
H. C. SINGHAL ◽  
N. B. PATEL ◽  
S. B. S. TIKKA ◽  
...  

SUMMARYIn the hilly areas of eastern Gujarat, western Madhya Pradesh and southern Rajasthan, in western India, farmers are very resource-poor and cultivate small and fragmented land holdings. Maize is their main rainy season (kharif) cereal and it is grown as a rainfed crop in low-fertility fields, often on sloping land that is vulnerable to soil erosion. Its productivity is very low, averaging below 1 t ha−1. New farm technologies to increase this productivity have to be low cost to be attractive to farmers who have limited access to purchased inputs and few means to purchase them. From observations of local farming practices, intercropping of maize with legumes was identified as an attractive option because the only additional input needed is seed of the legume crop. Participatory research was conducted on intercropping of maize with improved varieties of horsegram (Macrotyloma uniflorum). Many farmers who tried this intercropping adopted it in subsequent years, while others preferred to grow the new horsegram varieties as a sole crop. Farmers reported that less weeding was required in the intercrop as the horsegram smothered weeds. All farmers used the dry stover from the horsegram as a fodder for their animals. Farmers used the whole seed as dal, which provided additional protein in their diet. Farmers also sold the grain, but it fetched a low price in the poorly developed market for horsegram. Previously intercropping had been tried with local landraces, but the acceptance of intercropping was higher with new varieties such as AK-42 that yielded over 60% more grain. Participatory trials in which only one entry was compared with the local variety did not show a difference between AK-21 and AK-42 as in all cases both were preferred over the local variety. When they were directly compared with each other, farmers' perceptions showed a significant preference for AK-42. Variety IVH-2 was found to be better than AK-42: it matured 15 days earlier, better matching the maturity of the maize, had superior grain quality and yielded about the same. The greater uptake of improved horsegram varieties for sole and intercropping is likely to be limited by the lack of seed supply.


2015 ◽  
Vol 41 (4) ◽  
pp. 613
Author(s):  
Zhong-Wei TIAN ◽  
Yong-Hui FAN ◽  
Mei YIN ◽  
Fang-Rui WANG ◽  
Jian CAI ◽  
...  

2010 ◽  
Vol 36 (11) ◽  
pp. 1877-1882
Author(s):  
Jiang-Ping REN ◽  
Na WANG ◽  
Xin-Guo WANG ◽  
Yong-Chun LI ◽  
Hong-Bin NIU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document