scholarly journals Effects of the Combinations of Rhizobacteria, Mycorrhizae, and Seaweed, and Supplementary Irrigation on Growth and Yield in Wheat Cultivars

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 811
Author(s):  
Z. Najafi Vafa ◽  
Y. Sohrabi ◽  
R. Z. Sayyed ◽  
Ni Luh Suriani ◽  
Rahul Datta

Wheat is a staple food consumed by the majority of people in the world and its production needs to be doubled to feed the growing population. On the other hand, global wheat productivity is greatly affected due to drought and low fertility of soil under arid and semi-arid regions. Application of supplementary irrigation and plant growth-promoting rhizobacteria (PGPR) has been suggested as sustainable measures to combat drought stress and to improve soil fertility and, hence, crop yield. This research was undertaken to study the effect of supplementary irrigation together with a combination of various PGPR on the growth and yield of two wheat cultivars, namely Sardari and Sirvan. The results of variance analysis (mean of squares) showed that the effect of irrigation, cultivar, and irrigation and biofertilizer and irrigation on height, spike length, seed/spike, and numbers of spikes/m2, 1000-seed weight, and grain yield were significant at 1% probability level. The effect of cultivar and irrigation interactions showed that the highest grain yield was obtained in a treatment with two additional irrigations in Sirvan cultivar (5015.0 kg/ha) and Sardari (4838.9 kg/ha) as compared to the 3598 kg/ha and 3598.3 kg/h grain yield in Sirvan and Sardari cultivars with similar treatment, but without irrigation, i.e., dryland farming. Drought conditions significantly affected the wheat grain yield while supplementary irrigation resulted in 39.38% and 34.48% higher yields in Sirvan and Sardari cultivars.

Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 605
Author(s):  
Chesly Kit Kobua ◽  
Ying-Tzy Jou ◽  
Yu-Min Wang

Chemical fertilizer (CF) is necessary for optimal growth and grain production in rice farming. However, the continuous application of synthetic substances has adverse effects on the natural environment. Amending synthetic fertilizer with plant-growth-promoting rhizobacteria (PGPR) is an alternate option to reduce CF usage. In this study, a field trial was undertaken in southern Taiwan. We aimed to investigate the effects of reducing CF, either partially or completely, with PGPR on the vegetative growth, biomass production, and grain yield of rice plants cultivated under alternate wetting and drying (AWD) cultivation. In addition, we aimed to determine an optimal reduction in CF dose when incorporated with PGPR for application in rice cultivation under AWD. The trial consisted of four treatments, namely, 0% CF + 100% PGPR (FP1), 25% CF + 75% PGPR (FP2) 50% CF + 50% PGPR (FP3), and 100% CF + 0% PGPR (CONT). A randomized complete blocked design (RCBD) with three replicates was used. A reduction in CF by 25–50% with the difference compensated by PGPR significantly (p ≤ 0.05) influenced the crops biomass production. This improved the percentage of filled grains (PFG), and the thousand-grain weight (1000-GW) of treated plants by 4–5%. These improvements in growth and yield components eventually increased the grain yield production by 14%. It is concluded that partial replacement of CF with PGPR could be a viable approach to reduce the use of CF in existing rice cultivation systems. Furthermore, the approach has potential as a sustainable technique for rice cultivation.


2021 ◽  
Author(s):  
Saroj Kumar Yadav ◽  
Kiran P. Raverkar

French bean (Phaseolus vulgaris L.) is used profusely by the common people as an alternative diet of protein. The sparse nodulation in French bean mainly may be due to lack of threshold level of specific rhizobial cells in soil at the time of sowing. The isolates streaked on YEMA with BTB changed to yellow color showing the production of acid which is the characteristic of Rhizobium. Utilization of different carbon sources is an efficient tool to characterize the isolates. Plant growth promoting rhizobacteria is the beneficial rhizobacteria inoculation of which increases growth and yield of French bean through different direct and indirect mechanisms. Inoculation of French beans with rhizobial and rhizobacterial isolates found to be improved growth, physiological, quality parameters and grain yield through symbiotic N2-fixation capacity and plant growth promoting abilities. Co-inoculation of rhizobial and rhizobacterial isolates enhanced the growth and grain yield of French bean. These isolates may be used as consortium to improve the growth of French bean, which may reduce the dependency of farmer on chemical fertilizer as well as risk of pollution. In this chapter characterization of Rhizobium and plant growth promoting rhizobacteria and their effect on plant growth has been reviewed.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2065
Author(s):  
Hammad Anwar ◽  
Xiukang Wang ◽  
Azhar Hussain ◽  
Muhammad Rafay ◽  
Maqshoof Ahmad ◽  
...  

Plant growth-promoting rhizobacteria with multiple growth-promoting traits play a significant role in soil to improve soil health, crop growth and yield. Recent research studies have focused on the integration of organic amendments with plant growth-promoting rhizobacteria (PGPR) to enhance soil fertility and reduce the hazardous effects of chemical fertilizers. This study aims to evaluate the integrated application of biochar, compost, fruit and vegetable waste, and Bacillus subtilis (SMBL 1) to soil in sole application and in combined form. The study comprises eight treatments—four treatments without inoculation and four treatments with SMBL 1 inoculation in a completely randomized design (CRD), under factorial settings with four replications. The results indicate that the integrated treatments significantly improved okra growth and yield compared with sole applications. The integration of SMBL 1 with biochar showed significant improvements in plant height, root length, leaf chlorophyll a and b, leaf relative water content, fruit weight, diameter and length by 29, 29, 50, 53.3, 4.3, 44.7 and 40.4%, respectively, compared with control. Similarly, fruit N, P and K contents were improved by 33, 52.7 and 25.6% and Fe and Zn in shoot were 37.1 and 35.6%, respectively, compared with control. The results of this study reveal that the integration of SMBL 1 with organic amendments is an effective approach to the sustainable production of okra.


2019 ◽  
Vol 7 (1) ◽  
pp. 23
Author(s):  
Salamiah Salamiah ◽  
Muhammad Anton Ciptady ◽  
Chatimatun Nisa

<p>The productivity of onion in Indonesia is generally low due to fusarium wilt disease.  Biological controls can be applied using PGPR and Mycorrhizae. The purpose of this research was understand the interaction between PGPR and Mycorrhizal inoculation against fusarium wilt intensity as well as the growth and yield of onions. The isolation of <em>Fusarium oxysporum</em> f.sp <em>cepae</em> and PGPR, followed by the tests of PGPR inhibition ability, phosphate solvent and HCN compound productivity. The method used in the field was a completely randomized design (CRD) with 2 replications. Results showed that the combination of PGPR and mycorrhizae as a whole was unable to suppress <em>Fusarium</em> wilt disease, but had significant effect to postpone the incubation period (26,19 days after inoculation) and increase the growth and yield of onion compared to the onion plants infected with <em>Fusarium</em> but without the combined treatment of PGPR and mycorrhizae and the PGPR treatment and mycorrhizal treatment as single treatments; the application of mycorrhizae as the single factor had a very significant effect on the number of bulbs, but had no significant effect on the inhibition of fusarium wilt intensity as well as the growth and yield of onions.</p>


2021 ◽  
Author(s):  
Rafia Younas ◽  
Shiza Gul ◽  
Rehan Ahmad ◽  
Ali Raza Khan ◽  
Mumtaz Khan ◽  
...  

Global climate change is leading to a series of frequent onset of environmental stresses such as prolonged drought periods, dynamic precipitation patterns, heat stress, and cold stress on plants and commercial crops. The increasing severity of such stresses is not only making agriculture and related economic sector vulnerable but also negatively influences plant diversity patterns. The global temperature of planet Earth has risen to 1.1°C since the last 19th century. An increase in surface temperature leads to an increase in soil temperature which ultimately reduces water content in the soil, thereby, reducing crop growth and yield. Moreover, this situation is becoming more intense for agricultural practices in arid and semi-arid regions. To overcome climatically induced stresses, acclimatization of plant species via bioinoculation with Plant Growth Promoting Rhizobacteria (PGPR) is becoming an effective approach. The PGPR are capable of colonizing rhizosphere (exophytes) as well as plant organs (endophytes), where they trigger an accumulation of osmolytes for osmoregulation or improving gene expression of heat or cold stress proteins, or by signaling the synthesis of phytohormones, metabolites, proteins, and antioxidants to scavenge reactive oxygen species. Thus, PGPR exhibiting multiple plant growth-promoting traits can be employed via bioinoculants to improve the plant’s tolerance against unfavorable stress conditions.


Akta Agrosia ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 33-37
Author(s):  
Fera Ariska ◽  
Marlin Marlin ◽  
Widodo Widodo

Bawang dayak is the important medicinal plant that need to be developed in cultivation techniques and production. The use of Plant Growth Promoting Rhizobacteria (PGPR) recently known to be effective to increase plant growth and yield. The research aimed to determine the optimal concentration and immersion time of PGPR on the growth and yield of bawang dayak. The experiment was arrange in complete randomized block design (RCBD) consisting of two factors. The first factor is the concentration of PGPR with 4 levels namely K0 = 0 g L-1, K1 = 5 g L-1, K2 = 10 g L-1 and K3 = 15 g L-1.  The second factor is immersion time of seed, namely P1 = 10 minutes, P2 = 20 minutes, P3 = 30 minutes and P4 = 40 minutes.  The results showed that there was an interaction between concentration and immersion time of PGPR giving effect to the number of leaves and the number of tillers. The immersion time of PGPR for 10 minutes with a concentration of 15 g L-1produced the highest number of leaves (58 leaves) and produced the highest number of tillers (27.67 tillers).  The treatment of PGPR concentration or immersion time of PGPR singly did not affect all observed variables of growth and yield of bawang dayak.


Sign in / Sign up

Export Citation Format

Share Document