High-performing antifouling bacterial consortium for submerged membrane bioreactor treating synthetic wastewater

2017 ◽  
Vol 15 (2) ◽  
pp. 395-404 ◽  
Author(s):  
H. Waheed ◽  
S. Pervez ◽  
I. Hashmi ◽  
S. J. Khan ◽  
S.-R. Kim
2011 ◽  
Vol 356-360 ◽  
pp. 1109-1117
Author(s):  
Chun Hua Zhang ◽  
Yu Ying Dong ◽  
Feng Jie Zhang

In this study, a mathematical model has been developed for the submerged membrane bioreactor (SMBR). Polyvinyl alcohol (PVA) Modified Non-woven model is immerged in MBR to be used for synthetic wastewater treatment. The results show that membrane fouling resistance is mostly cake resistance occurring during filtration. Based on the concept of specific fouling resistance and Darcy law that describes the relationship between flux and resistance during filtration driven by pressure, a module is established to explain the relationship between specific fouling resistance and time during filtration controlled by cake resistance in SMBR. The decline trend of flux can be predicted by the model. The model is used to predict the decline trend of flux during pharmaceutical wastewater treatment. Compared with experimental data, the relative error is less than 10% at t>b, the relative error is less than 5% at t>2b. It shows that the model can predict the decline trend of flux during stable operation of SMBR. But the relative error is bigger during unstable operation at initial stage (t<b). The model developed in this study would provide a useful tool in optimizing operation conditions as well as design parameters for a SMBR system.


2014 ◽  
Vol 955-959 ◽  
pp. 1939-1943
Author(s):  
Chun Hua Zhang ◽  
Xiao Xia Ou ◽  
Feng Jie Zhang

Suspended carriers were added into a submerged membrane bioreactor (SMBR) using polypropylene non-woven fabric (PP NWF) as membrane model to treat synthetic wastewater. The changes of EPSSEPSB and EPS in activated sludge mixing liquid of MBR and in sludge on membrane model surface were researched at different aeration rate. The results showed that adding suspended carriers in MBR can increase the concentration of EPSS and EPSB in activated sludge mixing liquid, but the effect on EPSS and EPSB in the sludge on membrane model surface is related to aeration rate. Adding suspended carriers can increase the concentration of EPSS and EPSB in the sludge on membrane model surface at 0.10m3/h of aeration rate; the concentration of EPSS and EPSB in the sludge with suspended carriers is reduced when aeration rate is increased to 0.25m3/h. The study on the effect of aeration rate on EPS in sludge mixing liquid of MBR and in sludge on membrane model surface showed that an optimized aeration rate exists if suspended carriers are added to control MBR membrane fouling. At the optimized aeration rate, membrane fouling can be mitigated and controled effectively.


2013 ◽  
Vol 12 (12) ◽  
pp. 2371-2383
Author(s):  
Krishnaswamy Usharani ◽  
Perumalsamy Lakshmanaperumalsamy ◽  
Muthusamy Muthukumar

2010 ◽  
Vol 5 (3) ◽  
Author(s):  
Cheng-Nan Chang ◽  
Li-Ling Lee ◽  
Han-Hsien Huang ◽  
Ying-Chih Chiu

The performance of a real-time controlled Sequencing Batch Membrane Bioreactor (SBMBR) for removing organic matter and nitrogen from synthetic wastewater has been investigated in this study under two specific ammonia loadings of 0.0086 and 0.0045g NH4+-N gVSS−1 day−1. Laboratory results indicate that both COD and DOC removal are greater than 97.5% (w/w) but the major benefit of using membrane for solid-liquid separation is that the effluent can be decanted through the membrane while aeration is continued during the draw stage. With a continued aeration, the sludge cake layer is prevented from forming thus alleviating the membrane clogging problem in addition to significant nitrification activities observed in the draw stage. With adequate aeration in the oxic stage, the nitrogen removal efficiency exceeding 99% can be achieved with the SBMBR system. Furthermore, the SBMBR system has also been used to study the occurrence of ammonia valley and nitrate knee that can be used for real-time control of the biological process. Under appropriate ammonia loading rates, applicable ammonia valley and nitrate knee are detected. The real-time control of the SBMBR can be performed based on on-line ORP and pH measurements.


2004 ◽  
Vol 31 (4) ◽  
pp. 349-356
Author(s):  
Li Na ◽  
Li Zhidong ◽  
Li Guode ◽  
Wang Yan ◽  
Wu Shiwei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document