Carbon steel slag and stainless steel slag for removal of arsenic from stimulant and real groundwater

2017 ◽  
Vol 15 (11) ◽  
pp. 2337-2348 ◽  
Author(s):  
W. Shi ◽  
H. Li ◽  
G. Liao ◽  
G. Pei ◽  
Y. Lin
Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3307 ◽  
Author(s):  
Jinyan Liu ◽  
Cheng Yi ◽  
Hongguang Zhu ◽  
Hongqiang Ma

In order to compare the properties of alkali-activated carbon steel slag (CSS) and stainless steel slag (SSS), the effects of sodium hydroxide/sodium silicate solution mass ratio (NH/NS), liquid/solid ratio and blast furnace slag (BFS) dosage on the compressive strength, hydration products and hydration degree of CSS and SSS were studied. Furthermore, a combination of X-ray diffraction (XRD), thermo-gravimetric analysis coupled with differential thermal analysis (TGA-DTA), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope-energy dispersive spectrometer (SEM-EDS) were used to characterize the morphology and structure of alkali-activated CSS-BFS and SSS-BFS cementitious materials. As the results revealed, the primary hydrate of alkali-activated CSS and SSS is C-(A)-S-H with Q2 [SiO4] units, which has a low Ca/Si ratio and includes inert phases like a CaO-FeO-MnO-MgO solid solution (RO) in CSS while cuspidine, magnesiochromite etc. in SSS. More active C3S and β-C2S promote the alkali activation of CSS, whereas the less active γ-C2S hinders the depolymerization of SSS. The incorporation of BFS does not change the hydrate, whose seed effect is helpful for accelerating the depolymerization and polycondensation of CSS and SSS, especially for SSS, and makes the hydrate increase significantly. Owing to the high SiO2 and Al2O3 contents of SSS, the C-(A)-S-H chain length is increased, thus facilitating the polycondensation effect. In this study, the optimal NH/NS of CSS and SSS is NH/NS= 1:2, and the optimal liquid/solid ratio is 0.29. Compared to CSS–BFS, the C-(A)-S-H gel produced by SSS–BFS has lower Ca/Si and Al/Si ratios. Unlike CSS, pure SSS is inappropriate as an alkali-activated precursor and needs to be co-activated with BFS.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Saly Fathy ◽  
Guo Liping ◽  
Rui Ma ◽  
Gu Chunping ◽  
Sun Wei

This article investigates the effect of carbon steel slag (CS) and stainless steel slag (SS) on the hydration of cement (OPC). Two slags were used to replace cement at a replacement ratio of 15% (CS15 and SS15) and 30% (CS30 and SS30), respectively, by binder weight. Test results demonstrated that the hydration rate of OPC-CS binder is similar to that of OPC-SS binder at 3 days but higher than the latter at later ages. The negative effect of steel slag (CS) on the strength of cement mortar can be neglected when its replacement ratio does not exceed 15%. X-ray diffraction (XRD) and thermogravimetry (TG) show that the incorporation of SS tends to decrease calcium hydroxide (CH) content more than the incorporation of CS in the cement matrix. BSE (backscattered electron)/EDX (energy-dispersive X-ray spectroscopy) analyses estimate the average Si/Ca ratio of CS30 and SS30 at 90 days to be 0.41(Ca/Si = 2.44) and 0.45(Ca/Si = 2.22), respectively, compared to 0.43 (Ca/Si = 2.33) for pure cement.


Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 487 ◽  
Author(s):  
Jianli Li ◽  
Qiqiang Mou ◽  
Qiang Zeng ◽  
Yue Yu

The stability of chromium in stainless steel slag has a positive correlation with spinel particle size and a negative correlation with the calcium content of the spinel. The effect of heating time on the precipitation of spinel crystals in the CaO-SiO2-MgO-Al2O3-Cr2O3-FeO system was investigated in the laboratory. Scanning electron microscopy with energy-dispersive and X-ray diffraction were adopted to observe the microstructure, test the chemical composition, and determine the mineral phases of synthetic slags, and FactSage7.1 was applied to calculate the crystallization process of the molten slag. The results showed that the particle size of the spinel crystals increased from 9.42 to 10.73 μm, the calcium content in the spinel crystals decreased from 1.38 at% to 0.78 at%, and the content of chromium in the spinel crystal increased from 16.55 at% to 22.78 at% with an increase in the heating time from 0 min to 120 min at 1450 °C. Furthermore, the species of spinel minerals remained constant. Therefore, an extension in the heating time is beneficial for improving the stability of chromium in stainless steel slag.


2019 ◽  
Vol 5 (2) ◽  
pp. 157-171 ◽  
Author(s):  
Mikael Lindvall ◽  
Lily Lai Chi So ◽  
Mahdi Mahdi ◽  
Janice Bolen ◽  
Johannes Nell ◽  
...  

Rare Metals ◽  
2018 ◽  
Vol 37 (5) ◽  
pp. 413-420 ◽  
Author(s):  
Wen-Di Fan ◽  
Qiang-Wei Yang ◽  
Bin Guo ◽  
Bo Liu ◽  
Shen-Gen Zhang

Sign in / Sign up

Export Citation Format

Share Document