scholarly journals Metals concentrations in road dust from high traffic and low traffic area: a size dependent comparison

2020 ◽  
Vol 17 (7) ◽  
pp. 3365-3372 ◽  
Author(s):  
A. Miazgowicz ◽  
K. Krennhuber ◽  
C. Lanzerstorfer
Author(s):  
Tuan Hung Ngo ◽  
Pei Chun Tsai ◽  
Yune-Fang Ueng ◽  
Kai Hsien Chi

Fine particulate matter (PM2.5) from different sources with different components have different health impact. In this research in Taiwan, composition and cytotoxicity of PM2.5 from long-range transport event (LRT), traffic activity, and outdoor cooking at night market were studied. The PM2.5 mass concentrations were 39.0 μg/m3 during LRT, 42.9 μg/m3 at traffic area, and 28.3 μg/m3 at the night market. Traffic area had highest concentrations of PCDD/Fs (46.9 fg I-TEQ/m3) when highest PAH concentrations of 3.57 BaPeq-ng/m3 were found at night market area. One quarter of PM2.5 mass at LRT and night market was constituted by water-soluble ion (26.02–28.93%). Road dust (represented by high concentration of Al and Ca) was the main contributor for metal element at traffic station whereas presence of natural salt (Na and Cl elements) was a marker of LRT and cooking activities. Cell viability reduced 9% after exposure to organic extracts of 0.316 μg of PM2.5 from LRT and night market samples. 150% elevation of ROS production was observed after exposure with organic compound of night market samples at the dose equivalent to 10.0 μg PM2.5. Organic extracts from night market induced positive genotoxicity in umu test (at a dose of 20.0 μg PM2.5).


2019 ◽  
Vol 649 ◽  
pp. 1314-1322 ◽  
Author(s):  
Jin Zhang ◽  
Ruifei Li ◽  
Xiaoying Zhang ◽  
Yun Bai ◽  
Pan Cao ◽  
...  

2021 ◽  
Vol 1912 (1) ◽  
pp. 012054
Author(s):  
A Setyawan ◽  
Suryoto ◽  
Wibowo ◽  
M Rifai ◽  
A Sumarsono ◽  
...  

Author(s):  
M. A. Listvan ◽  
R. P. Andres

Knowledge of the function and structure of small metal clusters is one goal of research in catalysis. One important experimental parameter is cluster size. Ideally, one would like to produce metal clusters of regulated size in order to characterize size-dependent cluster properties.A source has been developed which is capable of producing microscopic metal clusters of controllable size (in the range 5-500 atoms) This source, the Multiple Expansion Cluster Source, with a Free Jet Deceleration Filter (MECS/FJDF) operates as follows. The bulk metal is heated in an oven to give controlled concentrations of monomer and dimer which were expanded sonically. These metal species were quenched and condensed in He and filtered to produce areosol particles of a controlled size as verified by mass spectrometer measurements. The clusters were caught on pre-mounted, clean carbon films. The grids were then transferred in air for microscopic examination. MECS/FJDF was used to produce two different sizes of silver clusters for this study: nominally Ag6 and Ag50.


Author(s):  
Lawrence W. Ortiz ◽  
Bonnie L. Isom

A procedure is described for the quantitative transfer of fibers and particulates collected on membrane filters to electron microscope (EM) grids. Various Millipore MF filters (Millipore AA, HA, GS, and VM; 0.8, 0.45, 0.22 and 0.05 μm mean pore size) have been used with success. Observed particle losses have not been size dependent and have not exceeded 10%. With fibers (glass or asbestos) as the collected media this observed loss is approximately 3%.


2020 ◽  
Vol 64 (2) ◽  
pp. 383-396
Author(s):  
Lara K. Krüger ◽  
Phong T. Tran

Abstract The mitotic spindle robustly scales with cell size in a plethora of different organisms. During development and throughout evolution, the spindle adjusts to cell size in metazoans and yeast in order to ensure faithful chromosome separation. Spindle adjustment to cell size occurs by the scaling of spindle length, spindle shape and the velocity of spindle assembly and elongation. Different mechanisms, depending on spindle structure and organism, account for these scaling relationships. The limited availability of critical spindle components, protein gradients, sequestration of spindle components, or post-translational modification and differential expression levels have been implicated in the regulation of spindle length and the spindle assembly/elongation velocity in a cell size-dependent manner. In this review, we will discuss the phenomenon and mechanisms of spindle length, spindle shape and spindle elongation velocity scaling with cell size.


1977 ◽  
Vol 38 (C1) ◽  
pp. C1-267-C1-269 ◽  
Author(s):  
C. M. SRIVASTAVA ◽  
M. J. PATNI ◽  
N. G. NANADIKAR
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document