Fleet Monitoring for High Driver Assistance Test Coverage

2021 ◽  
Vol 16 (12) ◽  
pp. 40-45
Author(s):  
Erich Ramschak ◽  
Rainer Vögl ◽  
Philipp Quinz ◽  
Rudolf Freidekind
Author(s):  
Rommel Estores ◽  
Karo Vander Gucht

Abstract This paper discusses a creative manual diagnosis approach, a complementary technique that provides the possibility to extend Automatic Test Pattern Generation (ATPG) beyond its own limits. The authors will discuss this approach in detail using an actual case – a test coverage issue where user-generated ATPG patterns and the resulting ATPG diagnosis isolated the fault to a small part of the digital core. However, traditional fault localization techniques was unable to isolate the fault further. Using the defect candidates from ATPG diagnosis as a starting point, manual diagnosis through fault Injection and fault simulation was performed. Further fault localization was performed using the ‘not detected’ (ND) and/or ‘detected’ (DT) fault classes for each of the available patterns. The result has successfully deduced the defect candidates until the exact faulty net causing the electrical failure was identified. The ability of the FA lab to maximize the use of ATPG in combination with other tools/techniques to investigate failures in detail; is crucial in the fast root cause determination and, in case of a test coverage, aid in having effective test screen method implemented.


2021 ◽  
Vol 11 (13) ◽  
pp. 5900
Author(s):  
Yohei Fujinami ◽  
Pongsathorn Raksincharoensak ◽  
Shunsaku Arita ◽  
Rei Kato

Advanced driver assistance systems (ADAS) for crash avoidance, when making a right-turn in left-hand traffic or left-turn in right-hand traffic, are expected to further reduce the number of traffic accidents caused by automobiles. Accurate future trajectory prediction of an ego vehicle for risk prediction is important to activate the assistance system correctly. Our objectives are to propose a trajectory prediction method for ADAS for safe intersection turnings and to evaluate the effectiveness of the proposed prediction method. Our proposed curve generation method is capable of generating a smooth curve without discontinuities in the curvature. By incorporating the curve generation method into the vehicle trajectory prediction, the proposed method could simulate the actual driving path of human drivers at a low computational cost. The curve would be required to define positions, angles, and curvatures at its initial and terminal points. Driving experiments conducted at real city traffic intersections proved that the proposed method could predict the trajectory with a high degree of accuracy for various shapes and sizes of the intersections. This paper also describes a method to determine the terminal conditions of the curve generation method from intersection features. We set a hypothesis where the conditions can be defined individually from intersection geometry. From the hypothesis, a formula to determine the parameter was derived empirically from the driving experiments. Public road driving experiments indicated that the parameters for the trajectory prediction could be appropriately estimated by the obtained empirical formula.


Author(s):  
D. S. Bhargava ◽  
N. Shyam ◽  
K. Senthil Kumar ◽  
M. Wasim Raja ◽  
P Sivashankar.

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Imanol Allende ◽  
Nicholas Mc Guire ◽  
Jon Perez-Cerrolaza ◽  
Lisandro G. Monsalve ◽  
Jens Petersohn ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3656
Author(s):  
Antonio Lazaro ◽  
Marc Lazaro ◽  
Ramon Villarino ◽  
David Girbau ◽  
Pedro de Paco

This work proposes the use of a modulated tag for direct communication between two vehicles using as a carrier the wave emitted by an FMCW radar installed in the vehicle for advanced driver assistance. The system allows for real-time signals detection and classification, such as stop signal, turn signals and emergency lights, adding redundancy to computer video sensors and without incorporating additional communication systems. A proof-of-concept tag has been designed at the microwave frequency of 24 GHz, consisting of an amplifier connected between receiving and transmitting antennas. The modulation is performed by switching the power supply of the amplifier. The tag is installed on the rear of the car and it answers when it is illuminated by the radar by modulating the backscattered field. The information is encoded in the modulation switching rate used. Simulated and experimental results are given showing the feasibility of the proposed solution.


Sign in / Sign up

Export Citation Format

Share Document