Assessment of Soil Chemical Quality, Soil Microbial Population and Plant Growth Parameters Under Organic and Conventional Rice–Wheat Cropping System

Author(s):  
Reeta Goel ◽  
Prasenjit Debbarma ◽  
Puja Kumari ◽  
Deep Chandra Suyal ◽  
Saurabh Kumar ◽  
...  
2019 ◽  
Vol 10 (2) ◽  
pp. 35
Author(s):  
Solomon A. Adejoro ◽  
Ajoke C. Adegaye ◽  
Rex D. Aladesanwa

Soil applied herbicides may persist to adversely affect rotational crops as well as perturb soil microbiological functions. This experiment therefore aimed at determining the effects of soil residual activity of diuron (3,4-dichlorophenyl)-N,N-dimethylurea) on Corchorus olitorius plants and on soil microbial population. Diuron herbicide was applied to potted soils at varying times of 12, 9, 6, 3 and zero weeks before planting Corchorus olitorius. Seed germination, seedling mortality, plant growth as well as soil microbial populations were determined. Results indicated that diuron, regardless of time of application significantly reduced growth parameters of C. olitorius plants few days after emergence, and this was followed by 100% die-back in the herbicide treated pots. Results further showed a reduction in soil microbial population with diuron application, and the reduction was inversely related to time of diuron application before sowing C. olitorius. Sensitive vegetables such as C. olitorius should not be sown to succeed a short season crop in which diuron had been applied to control weeds at the usual recommended rate of 3.0 kg a.i/ha. Allowance of a fallow period following the first crop might also help the soil microbial community to recover from diuron toxicity.


Author(s):  
Wahyu Purbalisa ◽  
Ina Zulaehah ◽  
Dolty Melyga W. Paputri ◽  
Sri Wahyuni

Carbon and microbes in the soil fluctuated from time to time due to various things. This study aims to determine the dynamics of carbon and microbes in the soil in the treatment of biochar-compost. In addition to the use of biochar-compost, this research also uses nano biochar and enrichment with microbial consortia. The study was conducted at the screen house using a complete randomized design with three replications with following treatments: control / without organic fertilizer (P0), compost (P1), biochar-compost 1: 4 (P2), nano-biochar-compost 1: 4 (P3 ), biochar-compost + microbial consortia (P4), compost + microbial consortia (P5) and biochar-compost + microbial consortia (P6) with a dose of 2.5 tons/ha respectively. Biochar comes from corncobs. Compost biochar plus application was made before planting.  Parameters observed were soil carbon (C-organic), soil acidity (pH) at 7 DAA, 37 DAA and after harvest, and the total soil microbial population at 2 DAA and after harvest. Soil carbon was measured using Walkey and Black method measured by spectrophotometer, soil pH using a soil: water ratio = 1: 5 and measured by a pH meter, the total microbial population using Total Plate Counting (TPC) method. The results showed carbon and soil microbial populations decreased over time, except for microbial communities in a single compost treatment.


1990 ◽  
Vol 329 (1255) ◽  
pp. 369-373 ◽  

We tried to develop deterministic models for kinetics of 2,4-D breakdown in the soil based on the following considerations: (i) at low concentrations degradation results from maintenance consumption by a large fraction of the soil microbial population; (ii) at high concentration in addition to the maintenance consumption there is a growth-associated carbon incorporation by a small specific microbial population. Values for the biokinetic parameters are consistent with those commonly found in the literature. Comparison between observed and simulated curves suggests that a non-negligible part of the pesticidal carbon exists as microbial by-products.


Sign in / Sign up

Export Citation Format

Share Document