The effectiveness of different width piezoelectric energy harvester in the pedestrian floor tile energy harvesting system for internet of things sensors

2020 ◽  
Vol 78 (1) ◽  
pp. 81-88
Author(s):  
Jeong Pil Jhun ◽  
Seong Do Hong ◽  
Deok Hwan Jeon ◽  
Tae Hyun Sung
Author(s):  
Abbas F. Jasim ◽  
Hao Wang ◽  
Greg Yesner ◽  
Ahmad Safari ◽  
Pat Szary

This study investigated the energy harvesting performance of a piezoelectric module in asphalt pavements through laboratory testing and multi-physics based simulation. The energy harvester module was assembled with layers of Bridge transducers and tested in the laboratory. A decoupled approach was used to study the interaction between the energy harvester and the surrounding pavement. The effects of embedment location, vehicle speed, and temperature on energy harvesting performance were investigated. The analysis findings indicate that the embedment location and vehicle speed affects the resulted power output of the piezoelectric energy harvesting system. The embedment depth of the energy module affects both the magnitude and frequency of stress pulse on top of the energy module induced by tire loading. On the other hand, higher vehicle speed causes greater loading frequency and thus greater power output; the effect of pavement temperature is negligible. The analysis of total power output before reaching fatigue failure of the energy module can be used to determine the optimum embedment location in the asphalt layer. The proposed energy harvesting system provides great potential to generate green energy from waste kinetic energy in roadway pavements. Field study is recommended to verify these findings with long-term performance monitoring of pavement with embedded energy harvesters.


2014 ◽  
Vol 953-954 ◽  
pp. 655-658 ◽  
Author(s):  
Guang Qing Shang ◽  
Hong Bing Wang ◽  
Chun Hua Sun

Energy harvesting system has become one of important areas of ​​research and develops rapidly. How to improve the performance of the piezoelectric vibration energy harvester is a key issue in engineering applications. There are many literature on piezoelectric energy harvesting. The paper places focus on summarizing these literature of mathematical modeling of piezoelectric energy harvesting, ranging from the linear to nonlinear, from early a single mechanical degree to piezoaeroelastic problems.


2013 ◽  
Vol 361-363 ◽  
pp. 263-266
Author(s):  
Bin Guan

The power supply of large number of sensors in the Internet of Things is the bottleneck technology of intelligent building. Piezoelectric energy harvesting is introduced as it is a perfect way to solve the problem. The vibration energies in intelligent building are analyzed and concluded with two important common characters. The five difficulties for the application of piezoelectric energy harvesting technology in intelligent building are introduced and solved. The module topology of energy harvester for sensor net in intelligent building application is presented.


Author(s):  
Noor Pratama Apriyanto ◽  
Eka Firmansyah ◽  
Lesnanto Multa Putranto

Limited battery power is a major challenge for wireless sensor network (WSN) in internet of things (IoT) applications, especially in hard-to-reach places that require periodic battery replacement. The energy harvesting application is intended as an alternative to maintain network lifetime by utilizing environmental energy. The proposed method utilized piezoelectricity to convert vibration or pressure energy into electrical energy through a modular piezoelectric energy harvesting design used to supply energy to sensor nodes in WSN. The module design consisted of several piezoelectric elements, of which each had a different character in generating energy. A bridge diode was connected to each element to reduce the feedback effect of other elements when pressure was exerted. The energy produced by the piezoelectric is an impulse so that the capacitor was used to quickly store the energy. The proposed module produced 7.436 μJ for each step and 297.4 μJ of total energy with pressure of a 45 kg load 40 times with specific experiments installed under each step. The energy could supply WSN nodes in IoT application with a simple energy harvesting system. This paper presents a procedure for measuring the energy harvested from a commonly available piezoelectric buzzer. The specific configurations of the piezoelectric and the experiment setups will be explained. Therefore, the output energy characteristics will be understood. In the end, the potentially harvested energy can be estimated. Therefore, the configuration of IoT WSN could be planned.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3151
Author(s):  
Shuo Yang ◽  
Bin Wu ◽  
Xiucheng Liu ◽  
Mingzhi Li ◽  
Heying Wang ◽  
...  

In this study, a novel piezoelectric energy harvester (PEH) based on the array composite spherical particle chain was constructed and explored in detail through simulation and experimental verification. The power test of the PEH based on array composite particle chains in the self-powered system was realized. Firstly, the model of PEH based on the composite spherical particle chain was constructed to theoretically realize the collection, transformation, and storage of impact energy, and the advantages of a composite particle chain in the field of piezoelectric energy harvesting were verified. Secondly, an experimental system was established to test the performance of the PEH, including the stability of the system under a continuous impact load, the power adjustment under different resistances, and the influence of the number of particle chains on the energy harvesting efficiency. Finally, a self-powered supply system was established with the PEH composed of three composite particle chains to realize the power supply of the microelectronic components. This paper presents a method of collecting impact energy based on particle chain structure, and lays an experimental foundation for the application of a composite particle chain in the field of piezoelectric energy harvesting.


2013 ◽  
Vol 52 (10S) ◽  
pp. 10MB03 ◽  
Author(s):  
Hyun Jun Jung ◽  
Daniel Song ◽  
Seong Kwang Hong ◽  
Yooseob Song ◽  
Tae Hyun Sung

2016 ◽  
Vol 09 (05) ◽  
pp. 1650069 ◽  
Author(s):  
Yaoze Liu ◽  
Tongqing Yang ◽  
Fangming Shu

Since the piezoelectric properties were used for energy harvesting, almost all forms of energy harvester needs to be bonded with a mass block to achieve pre-stress. In this article, disc type piezoelectric energy harvester is chosen as the research object and the relationship between mass bonding area and power output is studied. It is found that if the bonding area is changed as curved, which is usually complanate in previous studies, the deformation of the circular piezoelectric ceramic is more uniform and the power output is enhanced. In order to test the change of the deformation, we spray several homocentric annular electrodes on the surface of a piece of bare piezoelectric ceramic and the output of each electrode is tested. Through this optimization method, the power output is enhanced to more than 11[Formula: see text]mW for a matching load about 24[Formula: see text]k[Formula: see text] and a tip mass of 30[Formula: see text]g at its resonant frequency of 139[Formula: see text]Hz.


Author(s):  
Saman Farhangdoust ◽  
Claudia Mederos ◽  
Behrouz Farkiani ◽  
Armin Mehrabi ◽  
Hossein Taheri ◽  
...  

Abstract This paper presents a creative energy harvesting system using a bimorph piezoelectric cantilever-beam to power wireless sensors in an IoT network for the Sunshine Skyway Bridge. The bimorph piezoelectric energy harvester (BPEH) comprises a cantilever beam as a substrate sandwiched between two piezoelectric layers to remarkably harness ambient vibrations of an inclined stay cable and convert them into electrical energy when the cable is subjected to a harmonic acceleration. To investigate and design the bridge energy harvesting system, a field measurement was required for collecting cable vibration data. The results of a non-contact laser vibrometer is used to remotely measure the dynamic characteristics of the inclined cables. A finite element study is employed to simulate a 3-D model of the proposed BPEH by COMSOL Multiphasics. The FE modelling results showed that the average power generated by the BPEH excited by a harmonic acceleration of 1 m/s2 at 1 Hz is up to 614 μW which satisfies the minimum electric power required for the sensor node in the proposed IoT network. In this research a LoRaWAN architecture is also developed to utilize the BPEH as a sustainable and sufficient power resource for an IoT platform which uses wireless sensor networks installed on the bridge stay cables to collect and remotely transfer bridge health monitoring data over the bridge in a low-power manner.


2013 ◽  
Vol 52 (10S) ◽  
pp. 10MB01 ◽  
Author(s):  
Kyoung-Bum Kim ◽  
Chang Il Kim ◽  
Young Hun Jeong ◽  
Jeong-Ho Cho ◽  
Jong-Hoo Paik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document