scholarly journals Piezoelectric Energy Harvester for IoT Sensor Devices

Author(s):  
Noor Pratama Apriyanto ◽  
Eka Firmansyah ◽  
Lesnanto Multa Putranto

Limited battery power is a major challenge for wireless sensor network (WSN) in internet of things (IoT) applications, especially in hard-to-reach places that require periodic battery replacement. The energy harvesting application is intended as an alternative to maintain network lifetime by utilizing environmental energy. The proposed method utilized piezoelectricity to convert vibration or pressure energy into electrical energy through a modular piezoelectric energy harvesting design used to supply energy to sensor nodes in WSN. The module design consisted of several piezoelectric elements, of which each had a different character in generating energy. A bridge diode was connected to each element to reduce the feedback effect of other elements when pressure was exerted. The energy produced by the piezoelectric is an impulse so that the capacitor was used to quickly store the energy. The proposed module produced 7.436 μJ for each step and 297.4 μJ of total energy with pressure of a 45 kg load 40 times with specific experiments installed under each step. The energy could supply WSN nodes in IoT application with a simple energy harvesting system. This paper presents a procedure for measuring the energy harvested from a commonly available piezoelectric buzzer. The specific configurations of the piezoelectric and the experiment setups will be explained. Therefore, the output energy characteristics will be understood. In the end, the potentially harvested energy can be estimated. Therefore, the configuration of IoT WSN could be planned.

Author(s):  
Saman Farhangdoust ◽  
Claudia Mederos ◽  
Behrouz Farkiani ◽  
Armin Mehrabi ◽  
Hossein Taheri ◽  
...  

Abstract This paper presents a creative energy harvesting system using a bimorph piezoelectric cantilever-beam to power wireless sensors in an IoT network for the Sunshine Skyway Bridge. The bimorph piezoelectric energy harvester (BPEH) comprises a cantilever beam as a substrate sandwiched between two piezoelectric layers to remarkably harness ambient vibrations of an inclined stay cable and convert them into electrical energy when the cable is subjected to a harmonic acceleration. To investigate and design the bridge energy harvesting system, a field measurement was required for collecting cable vibration data. The results of a non-contact laser vibrometer is used to remotely measure the dynamic characteristics of the inclined cables. A finite element study is employed to simulate a 3-D model of the proposed BPEH by COMSOL Multiphasics. The FE modelling results showed that the average power generated by the BPEH excited by a harmonic acceleration of 1 m/s2 at 1 Hz is up to 614 μW which satisfies the minimum electric power required for the sensor node in the proposed IoT network. In this research a LoRaWAN architecture is also developed to utilize the BPEH as a sustainable and sufficient power resource for an IoT platform which uses wireless sensor networks installed on the bridge stay cables to collect and remotely transfer bridge health monitoring data over the bridge in a low-power manner.


Author(s):  
Abbas F. Jasim ◽  
Hao Wang ◽  
Greg Yesner ◽  
Ahmad Safari ◽  
Pat Szary

This study investigated the energy harvesting performance of a piezoelectric module in asphalt pavements through laboratory testing and multi-physics based simulation. The energy harvester module was assembled with layers of Bridge transducers and tested in the laboratory. A decoupled approach was used to study the interaction between the energy harvester and the surrounding pavement. The effects of embedment location, vehicle speed, and temperature on energy harvesting performance were investigated. The analysis findings indicate that the embedment location and vehicle speed affects the resulted power output of the piezoelectric energy harvesting system. The embedment depth of the energy module affects both the magnitude and frequency of stress pulse on top of the energy module induced by tire loading. On the other hand, higher vehicle speed causes greater loading frequency and thus greater power output; the effect of pavement temperature is negligible. The analysis of total power output before reaching fatigue failure of the energy module can be used to determine the optimum embedment location in the asphalt layer. The proposed energy harvesting system provides great potential to generate green energy from waste kinetic energy in roadway pavements. Field study is recommended to verify these findings with long-term performance monitoring of pavement with embedded energy harvesters.


2014 ◽  
Vol 953-954 ◽  
pp. 655-658 ◽  
Author(s):  
Guang Qing Shang ◽  
Hong Bing Wang ◽  
Chun Hua Sun

Energy harvesting system has become one of important areas of ​​research and develops rapidly. How to improve the performance of the piezoelectric vibration energy harvester is a key issue in engineering applications. There are many literature on piezoelectric energy harvesting. The paper places focus on summarizing these literature of mathematical modeling of piezoelectric energy harvesting, ranging from the linear to nonlinear, from early a single mechanical degree to piezoaeroelastic problems.


Author(s):  
Prateek Asthana ◽  
Gargi Khanna

Piezoelectric energy harvesting refers to conversion of mechanical energy into usable electrical energy. In the modern connected world, wireless sensor nodes are scattered around the environment. These nodes are powered by batteries. Batteries require regular replacement, hence energy harvesters providing continuous autonomous power are used to power these sensor nodes. This work provides two different fixation modes for the resonant frequency for the two modes. Variation in geometric parameter and their effect on resonant frequency and output power have been analyzed. These harvesters capture a wide-band of ambient vibrations and convert them into usable electrical energy. To capture random ambient vibrations, the harvester used is a wide-band energy harvester based on conventional seesaw mechanism. The proposed structure operates on first two resonant frequencies in comparison to the conventional cantilever system working on first resonant frequency. Resonance frequency, as well as response to a varying input vibration frequency, is carried out, showing better performance of seesaw cantilever design. In this work, modeling of wide-band energy harvester with proof mass is being performed. Position of proof mass plays a key role in determining the resonant frequency of the harvester. Placing the proof mass near or away from fixed end results in increase and decrease in stress on the piezoelectric layer. Hence, to avoid the breaking of cantilever, the position of proof mass has been analyzed.


2015 ◽  
Vol 25 (12) ◽  
pp. 1550171 ◽  
Author(s):  
Mattia Coccolo ◽  
Grzegorz Litak ◽  
Jesús M. Seoane ◽  
Miguel A. F. Sanjuán

In this paper, we study the vibrational resonance (VR) phenomenon as a useful mechanism for energy harvesting purposes. A system, driven by a low frequency and a high frequency forcing, can give birth to the vibrational resonance phenomenon, when the two forcing amplitudes resonate and a maximum in amplitude is reached. We apply this idea to a bistable oscillator that can convert environmental kinetic energy into electrical energy, that is, an energy harvester. Normally, the VR phenomenon is studied in terms of the forcing amplitudes or of the frequencies, that are not always easy to adjust and change. Here, we study the VR generated by tuning another parameter that is possible to manipulate when the forcing values depend on the environmental conditions. We have investigated the dependence of the maximum response due to the VR for small and large variations in the forcing amplitudes and frequencies. Besides, we have plotted color coded figures in the space of the two forcing amplitudes, in which it is possible to appreciate different patterns in the electrical power generated by the system. These patterns provide useful information on the forcing amplitudes in order to produce the optimal electrical power.


Author(s):  
Shaofan Qi ◽  
Roger Shuttleworth ◽  
S. Olutunde Oyadiji

Energy harvesting is the process of converting low level ambient energy into usable electrical energy, so that remote electronic instruments can be powered without the need for batteries or other supplies. Piezoelectric material has the ability to convert mechanical energy into electrical energy, and cantilever type harvesters using this material are being intensely investigated. The typical single cantilever energy harvester design has a limited bandwidth, and is restricted in ability for converting environmental vibration occurring over a wide range of frequencies. A multiple cantilever piezoelectric generator that works over a range of frequencies, yet has only one Piezo element, is being investigated. The design and testing of this novel harvester is described.


Author(s):  
H. Li ◽  
S. D. Hu ◽  
H. S. Tzou

Piezoelectric energy harvesting has experienced significant growth over the past few years. Various harvesting structures have been proposed to convert ambient vibration energies to electrical energy. However, these harvester’s base structures are mostly beams and some plates. Shells have great potential to harvest more energy. This study aims to evaluate a piezoelectric coupled conical shell based energy harvester system. Piezoelectric patches are laminated on the conical shell surface to convert vibration energy to electric energy. An open-circuit output voltage of the conical energy harvester is derived based on the thin-shell theory and the Donnel-Mushtari-Valsov theory. The open-circuit voltage and its derived energy consists of four components respectively resulting from the meridional and circular membrane strains, as well as the meridional and circular bending strains. Reducing the surface of the harvester to infinite small gives the spatial energy distribution on the shell surface. Then, the distributed modal energy harvesting characteristics of the proposed PVDF/conical shell harvester are evaluated in case studies. The results show that, for each mode with unit modal amplitude, the distribution depends on the mode shape, harvester location, and geometric parameters. The regions with high strain outputs yield higher modal energies. Accordingly, optimal locations for the PVDF harvester can be defined. Also, when modal amplitudes are specified, the overall energy of the conical shell harvester can be calculated.


2011 ◽  
Vol 22 (18) ◽  
pp. 2215-2228 ◽  
Author(s):  
Jayant Sirohi ◽  
Rohan Mahadik

There has been increasing interest in wireless sensor networks for a variety of outdoor applications including structural health monitoring and environmental monitoring. Replacement of batteries that power the nodes in these networks is maintenance intensive. A wind energy–harvesting device is proposed as an alternate power source for these wireless sensor nodes. The device is based on the galloping of a bar with triangular cross section attached to a cantilever beam. Piezoelectric sheets bonded to the beam convert the mechanical energy into electrical energy. A prototype device of size approximately 160 × 250 mm was fabricated and tested over a range of operating conditions in a wind tunnel, and the power dissipated across a load resistance was measured. A maximum power output of 53 mW was measured at a wind velocity of 11.6 mph. An analytical model incorporating the coupled electromechanical behavior of the piezoelectric sheets and quasi-steady aerodynamics was developed. The model showed good correlation with measurements, and it was concluded that a refined aerodynamic model may need to include apparent mass effects for more accurate predictions. The galloping piezoelectric energy-harvesting device has been shown to be a viable option for powering wireless sensor nodes in outdoor applications.


Author(s):  
Yuejuan Li ◽  
Marvin H. Cheng ◽  
Ezzat G. Bakhoum

Piezoelectric devices have been widely used as a means of transforming ambient vibrations into electrical energy that can be stored and used to power other devices. This type of power generation devices can provide a convenient alternative to traditional power sources used to operate certain types of sensors/actuators, MEMS devices, and microprocessor units. However, the amount of energy produced by these devices is in many cases far too small to directly power an electrical device. Therefore, much of the research into power harvesting has focused on methods of accumulating the energy until a sufficient amount is present, allowing the intended electronics to be powered. Due to the tiny amount of harvestable power from a single device, it is critical to collect vibration energy efficiently. Many research groups have developed various methods to operate the harvesting devices at their resonant frequencies for maximal amount of energy. Different techniques of conversion circuits are also investigated for efficient transformation from mechanical vibration to electrical energy. However, efforts have not been made to the analysis of array configuration of energy harvesting elements. Poor combination of piezoelectric elements, such as phase difference, cannot guarantee the increasing amount of harvested energy. To realize a piezoelectric energy-harvesting device with higher volume energy density, the energy conversion efficiencies of different array configurations were investigated. In the present study, various combinations of piezoelectric elements were analyzed to achieve higher volume energy density. A charging circuit for solid-state batteries with planned energy harvesting strategy was also proposed. With the planned harvesting strategy, the required charging time can be estimated. Thus, the applicable applications can be clearly identified. In this paper, optimal combination of piezoelectric cantilevers and different modes of charging methods were investigated. The results provide a means of choosing the piezoelectric device to be used and estimate the amount of time required to recharge a specific capacity solid-state battery.


Sign in / Sign up

Export Citation Format

Share Document