scholarly journals Development and testing of a novel geothermal wall system

Author(s):  
Matteo Baralis ◽  
Marco Barla

AbstractShallow geothermal energy systems have the potential to contribute to the decarbonization of heating and cooling demands of buildings. These systems typically present drawbacks as high initial investments and occupancy of wide areas. In this study, a novel energy wall system is proposed to overcome the limitations of conventional geothermal applications in urban areas. The system is characterized by ease of installation, low initial costs and applicability to existing buildings undergoing energy retrofitting. The paper illustrates the implementation of the prototype of such a system to an existing structure in Torino (Italy). An overview of the components is given together with the interpretation of an illustrative test carried out in heating mode. The data from both heating and cooling experimental campaigns allow us to highlight the potential of the proposed technology. The results suggest that an average thermal power of about 17 W per unit area can be exchanged with the ground in heating mode, while an average of 68 W per unit area is exchanged in cooling operations. The negligible impact on the stress–strain state of the wall and the surrounding soil thermal and hygrometric regime is also testified by the results collected. These aspects are associated with a reduced probability of interferences with other installations in highly urbanized areas, easiness of installation and affordable cost.

2021 ◽  
Vol 11 (6) ◽  
pp. 2691
Author(s):  
Nataša Ćuković Ignjatović ◽  
Ana Vranješ ◽  
Dušan Ignjatović ◽  
Dejan Milenić ◽  
Olivera Krunić

The study presented in this paper assessed the multidisciplinary approach of geothermal potential in the area of the most southeastern part of the Pannonian basin, focused on resources utilization. This study aims to present a method for the cascade use of geothermal energy as a source of thermal energy for space heating and cooling and as a resource for balneological purposes. Two particular sites were selected—one in a natural environment; the other within a small settlement. Geothermal resources come from different types of reservoirs having different temperatures and chemical compositions. At the first site, a geothermal spring with a temperature of 20.5 °C is considered for heat pump utilization, while at the second site, a geothermal well with a temperature of 54 °C is suitable for direct use. The calculated thermal power, which can be obtained from geothermal energy is in the range of 300 to 950 kW. The development concept was proposed with an architectural design to enable sustainable energy efficient development of wellness and spa/medical facilities that can be supported by local authorities. The resulting energy heating needs for different scenarios were 16–105 kW, which can be met in full by the use of geothermal energy.


2016 ◽  
Vol 86 ◽  
pp. 1023-1036 ◽  
Author(s):  
Kerry Schiel ◽  
Olivier Baume ◽  
Geoffrey Caruso ◽  
Ulrich Leopold

Author(s):  
M. Ouzzane ◽  
M. T. Naqash ◽  
O. Harireche

A large part of the total energy consumption in buildings in the Kingdom of Saudi Arabia (K.S.A.), is devoted to air cooling. This leads to high electricity costs for residents and a high amount of equivalent CO2 emissions. The work presented in this paper aims at evaluating and applying shallow geothermal energy for cooling and heating to reduce cost and environmental issues in the Kingdom. The system is based on the earth-air heat exchanger (EAHE) equipped with an air circulation fan. In this study, six cities have been selected; Madinah city, where our university is located, and five other cities representing five different climatic zones. A new parameter called “geothermal percentage” is proposed to calculate the ratio of geothermal energy to the cooling/heating total load. It has been shown that the proposed system covers part of the cooling load and the total heating needs for almost all the country’s territory. However, both heating and cooling needs can be fulfilled by the EAHE for few cities such as Guriiat and Khamis, characterized by a moderate climate.


2021 ◽  
Author(s):  
Shuang Chen ◽  
Jakob Randow ◽  
Katrin Lubashevsky ◽  
Steve Thiel ◽  
Tom Reinhardt ◽  
...  

<p>Nowadays, utilizing shallow geothermal energy for heating and cooling buildings has received increased interest in the energy market. Among different technologies, large borehole heat exchanger (BHE) arrays are widely employed to supply heat to various types of buildings and districts. Recently, a 16-BHE array was constructed to extract shallow geothermal energy to provide heat to the newly-developed public building in Berlin. According to the previous geological survey, different non-homogeneous sedimentary layers exist in the subsurface, with variating groundwater permeabilities and thermal parameters. To estimate the performance of the BHE array system, and its sensitivity to different subsurface conditions, as well as to determine its thermal impact to the surrounding area, a comprehensive 3D numerical model has been set up according to the Berlin BHE array project. The model is simulated for 25 years with two finite element simulators, the open source code software OpenGeoSys (OGS) and the well-known commercial software FEFLOW. In the model, an annual thermal load curve is assigned to each BHE according to the real monthly heating demand. Although the way of the implementing parameters in the two programs differs from each other and some assumptions had to be made in the model comparison, the comparison result shows that both OpenGeoSys and FEFLOW produce in good agreement. Different parameters, e.g. the Darcy velocity, the thermal dispersivity of the aquifer, the surface temperature and the geothermal heat flux are investigated with respect to their impact on the underground and BHE circulation temperature. At last, the computed underground temperature and the brine fluid temperature evolution from OGS is benchmarked with the results from the model simulated in FEFLOW. The numerical experiments show that the the ground water field has the strongest influence on the brine fluid temperature within the BHEs. When the thermal dispersivity of the aquifer is considered, the mixing effect in the aquifer leads to a higher brine fluid temperature in the BHE, indicating a better thermal recharge of the system.</p>


2020 ◽  
Author(s):  
Cornelia Steiner ◽  
Stasa Borovic ◽  
Alejandro García-Gil ◽  
Claus Ditlefsen ◽  
David Boon ◽  
...  

<p>The shallow subsurface comprising groundwater bodies as well as solid rock formations in the uppermost tens to hundreds of meters below surface offer significant resources for renewable heating, cooling and seasonal underground heat storage. Shallow geothermal energy (SGE) comprises the technologies to exchange heat between the subsurface and surface via closed loop or open loop heat exchangers. Although SGE just covered around 2% of the renewable heat production in the EU in 2018, its huge potential for low temperature heating and cooling supply is expected to lead to a significant market growth across Europe in the upcoming decade. Especially as SGE offers the unique possibility to supply heating, cooling and storing waste heat with one technology. SGE offers advantages especially in urban areas. It does not produce waste heat if applied for cooling, which can be considered as an important measure to mitigate urban heat islands. It consumes low amount of surface space for its installation and applying SGE is free of emissions in terms of aerosols or noise. Moreover, it can be combined with other renewables such as solar and waste heat or excess energy. In these cases, SGE acts as a seasonal heat storage.</p><p>The increasing interest in SGE in urban areas, however, puts pressure on the subsurface, especially on shallow groundwater bodies. In that context, SGE systems may compete with each other as well as with water supply and subsurface installations. In many European countries, management approaches of SGE are either lacking or follow the first come first serve approach. Integrative management approaches follow an information and decision cycle, starting and ending at collecting, processing and providing geoscientific data on subsurface conditions to stakeholders, such as authorities, investors and city planners.</p><p>GeoERA MUSE addresses integrative management approaches for the use of SGE by harmonizing concepts and testing them in 14 European cities facing different climatic, hydrogeologic and socio-economic boundary conditions. MUSE deals with mapping resources and limitations of SGE resources and displays them in modern web-based interfaces. Knowing resources and limitations referring to interference with other SGE systems or other shallow subsurface installations is the starting point for integrative management approaches, which include summation effects and abandon first come first serve. MUSE pilot areas follow the whole management cycle from creating subsurface data (e.g. subsurface temperatures, thermal rock properties), deriving resource models (amount of energy available for use), limitations of use (contaminated areas, problematic chemical composition of groundwater) and displaying the information gained at the EGDI web platform of EuroGeoSurveys. Furthermore, MUSE interacts with local stakeholders to transfer geoscientific data models into managing strategies. In that sense, the pilot areas act as role model for other urban regions in Europe. Additionally, MUSE creates joint concepts and standards to strengthen the role of Geological Survey Organisations towards a key player in managing an efficient and sustainable use of urban subsurface in general and SGE in urban areas in detail. MUSE has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731166.      </p>


2014 ◽  
Vol 126 (2) ◽  
pp. 25
Author(s):  
Ian Johnston

Below a depth of around 5 to 8 metres below the surface, the ground displays a temperature which is effectively constant and a degree or two above the weighted mean annual air temperature at that particular location. In Melbourne, the ground temperature at this depth is around 18°C with temperatures at shallower depths varying according the season. Further north, these constant temperatures increase a little; while for more southern latitudes, the temperatures are a few degrees cooler. Shallow source geothermal energy (also referred to as direct geothermal energy, ground energy using ground source heat pumps and geoexchange) uses the ground and its temperatures to depths of a few tens of metres as a heat source in winter and a heat sink in summer for heating and cooling buildings. Fluid (usually water) is circulated through a ground heat exchanger (or GHE, which comprises pipes built into building foundations, or in specifically drilled boreholes or trenches), and back to the surface. In heating mode, heat contained in the circulating fluid is extracted by a ground source heat pump (GSHP) and used to heat the building. The cooled fluid is reinjected into the ground loops to heat up again to complete the cycle. In cooling mode, the system is reversed with heat taken out of the building transferred to the fluid which is injected underground to dump the extra heat to the ground. The cooled fluid then returns to the heat pump to receive more heat from the building.


2020 ◽  
Author(s):  
Matteo Baralis ◽  
Marco Barla

<p>Shallow geothermal energy (SGE) is increasingly being regarded as a valuable solution for space heating and conditioning because of high efficiency, diffuse availability and low environmental impact. Significant growth in the number of installations is envisaged as a result of energy policies and European Directives. Indeed, the obligations in the construction sector about the share of energy supply from renewable sources is increasingly pushing the design of new and renovated buildings. On the one hand shallow geothermal energy is suitable as a sustainable and distributed energy source. On the other hand, significant installation costs related to drilling of traditional installations represent an hampering factor. Thermally activating geostructures such as piles, diaphragm wall, tunnels and anchors can allow to include these costs in the construction of the structural elements. Moreover, a large availability of operational surface is represented by new and/or existing building heritage in urban areas as most of them  have underground levels that can be equipped with heat exchangers.</p><p>This contribution introduces a novel modular very shallow geothermal exchanger as part of a Heating, Ventilation and Air Conditioning (HVAC) system. The system concept allows its application not only to new structures and buildings but also to existing ones. While the low depths interested may penalize the heat exchange rates, on the contrary, extremely low installation costs make the cost-benefit ratio of this new technology extremely interesting and promising.</p><p>A first prototype consisting of three modules was designed by the authors and installed in an office building in Torino (Italy). External deployment of pipes to the basement wall in two different arrangements was realized in order to test system efficiency. Due to the experimental nature of the tests, a large number of sensors were placed to monitor the additional stresses and strains on the wall and the thermal regime of the partially saturated ground volume involved in heat exchange.</p><p>Preliminary thermal performance tests were performed together with numerical modelling re-interpretation. On the basis of the first tests and interpretation carried out, it was demonstrated that remarkable heat exchange rates of up to 20 and 27 W/m<sup>2</sup> could be injected/extracted from the ground in summer and winter respectively. Furthermore, the monitoring records suggest that extremely low affection of ground thermal status is operated by the system with respect to analogous non thermo-active walls. This evidence is extremely promising in the perspective of wide and dense diffusion of this new shallow geothermal energy system in urban areas where thermal interferences should be limited or avoided.</p>


2011 ◽  
Vol 22 (8) ◽  
pp. 1029-1050 ◽  
Author(s):  
Mohammed Awwad Ali Al-Dabbas

Geothermal energy in Jordan is a low-emission and renewable source that could provide households and commercial buildings with both heating and cooling. Access to this ‘free’ energy may be available just a few feet underground. Thus, the objectives of this research are: Designing ground heat exchanger to utilize geothermal energy in heating in which the primary geothermal fluid is exchanged with secondary clean fluid The feasibility of designing ground heat exchanger system to pumping geothermal energy under the climate of Jordan weather in Ma'en area Amount of energy saved The design procedure involves applying the energy and the momentum equations around the geothermal fluid circuit. The FLUENT software program is used to calculate the ground heat exchanger parameters and the amount of energy saved. Finally, the feasibility study shows that the Geoexchange systems represent a savings to homeowners of around 70% in the heating mode, and up to 50% in the cooling mode compared with conventional fossil fuel systems.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5740
Author(s):  
Adela Ramos-Escudero ◽  
M. Socorro García-Cascales ◽  
Javier F. Urchueguía

In order to boost the use of shallow geothermal energy, reliable and sound information concerning its potential must be provided to the public and energy decision-makers, among others. To this end, we developed a GIS-based methodology that allowed us to estimate the resource, energy, economic and environmental potential of shallow geothermal energy at a regional scale. Our method focuses on closed-loop borehole heat exchanger systems, which are by far the systems that are most utilized for heating and cooling purposes, and whose energy demands are similar throughout the year in the study area applied. The resource was assessed based on the thermal properties from the surface to a depth of 100 m, considering the water saturation grade of the materials. Additionally, climate and building characteristics data were also used as the main input. The G.POT method was used for assessing the annual shallow geothermal resource and for the specific heat extraction (sHe) rate estimation for both heating and, for the first time, for cooling. The method was applied to the Region of Murcia (Spain) and thematic maps were created with the outputting results. They offer insight toward the thermal energy that can be extracted for both heating and cooling in (MWh/year) and (W/m); the technical potential, making a distinction over the climate zones in the region; the cost of the possible ground source heat pump (GSHP) installation, associated payback period and the cost of producing the shallow geothermal energy; and, finally, the GHG emissions savings derived from its usage. The model also output the specific heat extraction rates, which are compared to those from the VDI 4640, which prove to be slightly higher than the previous one.


Sign in / Sign up

Export Citation Format

Share Document