scholarly journals Reviewing the Role of Ultra-Widefield Imaging in Inherited Retinal Dystrophies

2020 ◽  
Vol 9 (2) ◽  
pp. 249-263 ◽  
Author(s):  
Maria Vittoria Cicinelli ◽  
Alessandro Marchese ◽  
Alessandro Bordato ◽  
Maria Pia Manitto ◽  
Francesco Bandello ◽  
...  
Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 473
Author(s):  
Carla Fuster-García ◽  
Belén García-Bohórquez ◽  
Ana Rodríguez-Muñoz ◽  
José M. Millán ◽  
Gema García-García

Inherited retinal dystrophies are an assorted group of rare diseases that collectively account for the major cause of visual impairment of genetic origin worldwide. Besides clinically, these vision loss disorders present a high genetic and allelic heterogeneity. To date, over 250 genes have been associated to retinal dystrophies with reported causative variants of every nature (nonsense, missense, frameshift, splice-site, large rearrangements, and so forth). Except for a fistful of mutations, most of them are private and affect one or few families, making it a challenge to ratify the newly identified candidate genes or the pathogenicity of dubious variants in disease-associated loci. A recurrent option involves altering the gene in in vitro or in vivo systems to contrast the resulting phenotype and molecular imprint. To validate specific mutations, the process must rely on simulating the precise genetic change, which, until recently, proved to be a difficult endeavor. The rise of the CRISPR/Cas9 technology and its adaptation for genetic engineering now offers a resourceful suite of tools to alleviate the process of functional studies. Here we review the implementation of these RNA-programmable Cas9 nucleases in culture-based and animal models to elucidate the role of novel genes and variants in retinal dystrophies.


2000 ◽  
Vol 8 (10) ◽  
pp. 783-787 ◽  
Author(s):  
David AR Bessant ◽  
Annette M Payne ◽  
Catherine Plant ◽  
Alan C Bird ◽  
Anand Swaroop ◽  
...  

2021 ◽  
Vol 13 ◽  
pp. 251584142199719
Author(s):  
Simranjeet Singh Grewal ◽  
Joseph J. Smith ◽  
Amanda-Jayne F. Carr

Bestrophinopathies are a group of clinically distinct inherited retinal dystrophies that typically affect the macular region, an area synonymous with central high acuity vision. This spectrum of disorders is caused by mutations in bestrophin1 ( BEST1), a protein thought to act as a Ca2+-activated Cl- channel in the retinal pigment epithelium (RPE) of the eye. Although bestrophinopathies are rare, over 250 individual pathological mutations have been identified in the BEST1 gene, with many reported to have various clinical expressivity and incomplete penetrance. With no current clinical treatments available for patients with bestrophinopathies, understanding the role of BEST1 in cells and the pathological pathways underlying disease has become a priority. Induced pluripotent stem cell (iPSC) technology is helping to uncover disease mechanisms and develop treatments for RPE diseases, like bestrophinopathies. Here, we provide a comprehensive review of the pathophysiology of bestrophinopathies and highlight how patient-derived iPSC-RPE are being used to test new genomic therapies in vitro.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 935
Author(s):  
Manas R. Biswal ◽  
Sofia Bhatia

Ocular gene therapy offers significant potential for preventing retinal dystrophy in patients with inherited retinal dystrophies (IRD). Adeno-associated virus (AAV) based gene transfer is the most common and successful gene delivery approach to the eye. These days, many studies are using non-viral nanoparticles (NPs) as an alternative therapeutic option because of their unique properties and biocompatibility. Here, we discuss the potential of carbon dots (CDs), a new type of nanocarrier for gene delivery to the retinal cells. The unique physicochemical properties of CDs (such as optical, electronic, and catalytic) make them suitable for biosensing, imaging, drug, and gene delivery applications. Efficient gene delivery to the retinal cells using CDs depends on various factors, such as photoluminescence, quantum yield, biocompatibility, size, and shape. In this review, we focused on different approaches used to synthesize CDs, classify CDs, various pathways for the intake of gene-loaded carbon nanoparticles inside the cell, and multiple studies that worked on transferring nucleic acid in the eye using CDs.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1033
Author(s):  
Lorena Olivares-González ◽  
Sheyla Velasco ◽  
Isabel Campillo ◽  
David Salom ◽  
Emilio González-García ◽  
...  

Background: Retinitis pigmentosa (RP) is a group of inherited retinal dystrophies characterized by progressive degeneration of photoreceptor cells. Ocular redox status is altered in RP suggesting oxidative stress could contribute to their progression. In this study, we investigated the effect of a mixture of nutraceuticals with antioxidant properties (NUT) on retinal degeneration in rd10 mice, a model of RP. Methods: NUT was orally administered to rd10 mice from postnatal day (PD) 9 to PD18. At PD18 retinal function and morphology were examined by electroretinography (ERG) and histology including TUNEL assay, immunolabeling of microglia, Müller cells, and poly ADP ribose polymers. Retinal redox status was determined by measuring the activity of antioxidant enzymes and some oxidative stress markers. Gene expression of the cytokines IL-6, TNFα, and IL-1β was assessed by real-time PCR. Results: NUT treatment delayed the loss of photoreceptors in rd10 mice partially preserving their electrical responses to light stimuli. Moreover, it ameliorated redox status and reduced inflammation including microglia activation, upregulation of cytokines, reactive gliosis, and PARP overactivation. Conclusions: NUT ameliorated retinal functionality and morphology at early stages of RP in rd10 mice. This formulation could be useful as a neuroprotective approach for patients with RP in the future.


PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e88410 ◽  
Author(s):  
Marta de Castro-Miró ◽  
Esther Pomares ◽  
Laura Lorés-Motta ◽  
Raul Tonda ◽  
Joaquín Dopazo ◽  
...  

2017 ◽  
Vol 46 (3) ◽  
pp. 247-259 ◽  
Author(s):  
Daniel C Chung ◽  
Sarah McCague ◽  
Zi-Fan Yu ◽  
Satha Thill ◽  
Julie DiStefano-Pappas ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Atta Ur Rehman ◽  
Neda Sepahi ◽  
Nicola Bedoni ◽  
Zeinab Ravesh ◽  
Arash Salmaninejad ◽  
...  

AbstractInherited retinal dystrophies (IRDs) constitute one of the most heterogeneous groups of Mendelian human disorders. Using autozygome-guided next-generation sequencing methods in 17 consanguineous pedigrees of Iranian descent with isolated or syndromic IRD, we identified 17 distinct genomic variants in 11 previously-reported disease genes. Consistent with a recessive inheritance pattern, as suggested by pedigrees, variants discovered in our study were exclusively bi-allelic and mostly in a homozygous state (in 15 families out of 17, or 88%). Out of the 17 variants identified, 5 (29%) were never reported before. Interestingly, two mutations (GUCY2D:c.564dup, p.Ala189ArgfsTer130 and TULP1:c.1199G > A, p.Arg400Gln) were also identified in four separate pedigrees (two pedigrees each). In addition to expanding the mutational spectrum of IRDs, our findings confirm that the traditional practice of endogamy in the Iranian population is a prime cause for the appearance of IRDs.


Sign in / Sign up

Export Citation Format

Share Document